Câu 15 trang 142 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 15. Tìm giới hạn của các dãy số (un) với

a.  \({u_n} = {{{3^n} + 1} \over {{2^n} - 1}}\)

b.  \({u_n} = {2^n} - {3^n}\)

Hướng dẫn giải

a. Chia cả tử và mẫu cho 3ta được :  \({u_n} = {{1 + {{\left( {{1 \over 3}} \right)}^n}} \over {{{\left( {{2 \over 3}} \right)}^n} - {{\left( {{1 \over 3}} \right)}^n}}}\)

\(\eqalign{
& \lim \left[ {1 + {{\left( {{1 \over 3}} \right)}^n}} \right] = 1 > 0\text{ và }\lim \left[ {{{\left( {{2 \over 3}} \right)}^n} - {{\left( {{1 \over 3}} \right)}^n}} \right] = 0\,; \cr
& \text{ nên }\,\lim {u_n} = + \infty \cr} \)

b.

\(\eqalign{
& {u_n} = {3^n}\left[ {{{\left( {{2 \over 3}} \right)}^n} - 1} \right] \cr
& \lim {3^n} = + \infty \text{ và }\lim \left[ {{{\left( {{2 \over 3}} \right)}^n} - 1} \right] = - 1 < 0 \cr
&\text{ nên }{{\mathop{\rm lim}\nolimits}\,u _n} = - \infty \cr} \)

Copyright © 2021 HOCTAP247