Trang chủ Lớp 11 Toán Lớp 11 SGK Cũ Bài 2. Các quy tắc tính đạo hàm Câu 24 trang 205 SGK Đại số và Giải tích 11 Nâng cao

Câu 24 trang 205 SGK Đại số và Giải tích 11 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Viết phương trình tiếp tuyến của đồ thị hàm số

a. \(y = {{x - 1} \over {x + 1}}\), biết hoành độ tiếp điểm là x0 = 0

b. \(y = \sqrt {x + 2} ,\) biết tung độ tiếp điểm là y0 = 2.

Hướng dẫn giải

a.

\(\eqalign{  & f\left( x \right) = {{x - 1} \over {x + 1}}  \cr  & {x_0} = 0 \Rightarrow {y_0} = f\left( 0 \right) =  - 1  \cr  & f'\left( x \right) = {{\left| {\matrix{   1 & { - 1}  \cr   1 & 1  \cr  } } \right|} \over {{{\left( {x + 1} \right)}^2}}} = {2 \over {{{\left( {x + 1} \right)}^2}}} \Rightarrow f\left( 0 \right) = 2 \cr} \)

Phương trình tiếp tuyến cần tìm là :

\(y - \left( { - 1} \right) = 2\left( {x - 0} \right) \Leftrightarrow y = 2x - 1\)

b.

\(\eqalign{  & f\left( x \right) = \sqrt {x + 2} ;f\left( {{x_0}} \right) = 2 \cr&\Leftrightarrow \sqrt {{x_0} + 2}  = 2 \Leftrightarrow {x_0} = 2  \cr  & f'\left( x \right) = {1 \over {2\sqrt {x + 2} }} \Rightarrow f'\left( 2 \right) = {1 \over 4} \cr} \)

Phương trình tiếp tuyến cần tìm là :

\(y - 2 = {1 \over 4}\left( {x - 2} \right) \Leftrightarrow y = {{x + 6} \over 4}\)

Copyright © 2021 HOCTAP247