Viết phương trình tiếp tuyến của parabol \(y = {x^2}\) , biết rằng tiếp tuyến đó đi qua điểm A(0 ; -1).
Hướng dẫn : Trước hết viết phương trình tiếp tuyến tại điểm có hoành độ x0 thuộc parabol đã cho. Sau đó tìm x0 để tiếp tuyến đi qua điểm A (chú ý rằng điểm A không thuộc parabol).
Đặt \(f\left( x \right) = {x^2}\) và gọi M0 là điểm thuộc (P) với hoành độ x0. Khi đó tọa độ của điểm M0 là \(\left( {{x_0};f\left( {{x_0}} \right)} \right)\,hay\,\left( {{x_0};x_0^2} \right)\)
Cách 1 : Ta có: \(y’ = 2x\). Phương trình tiếp điểm của (P) tại điểm M0 là
\(y = 2{x_0}\left( {x - {x_0}} \right) + x_0^2 \Leftrightarrow y = 2{x_0}x - x_0^2\)
Tiếp tuyến đó đi qua điểm A(0 ; -1) nên ta có :
\( - 1 = 2{x_0}.0 - x_0^2 \Leftrightarrow {x_0} = \pm 1\)
+ Với x0 = 1 thì f(x0) = 1, f ’(x0) = 2 và phương trình tiếp tuyến phải tìm là :
\(y = 2\left( {x - 1} \right) + 1 \Leftrightarrow y = 2x - 1\)
+ Với x0 = -1 thì f(x0) = 1, f ’(x0) = -2
và phương trình tiếp tuyến phải tìm là :
\(y = - 2\left( {x + 1} \right) + 1 \Leftrightarrow y = - 2x - 1\)
Vậy có hai tiếp tuyến của (P) đi qua
A với các phương trình tương ứng là: \(y = ±2x – 1\)
Cách 2 : Phương trình đường thẳng (d) đi qua A(0 ; -1) với hệ số góc k là :
\(y = kx - 1\)
Để (d) tiếp xúc (P) tại điểm M0 điều kiện cần và đủ là:
\(\left\{ {\matrix{ {f\left( {{x_0}} \right) = k{x_0} - 1} \cr {f'\left( {{x_0}} \right) = k} \cr } } \right.\,hay\,\left\{ {\matrix{ {x_0^2 = k{x_0} - 1} \cr {2{x_0} = k} \cr } } \right.\)
Khử x0 từ hệ này ta tìm được \(k = ±2\).
Vậy có hai tiếp tuyến của (P) đi qua điểm A(0 ; -1) với các phương trình là :
\(y = \pm 2x - 1\)
Copyright © 2021 HOCTAP247