Định nghĩa 1:
Ta nói rằng dãy số (un) có giới hạn là 0 khi n dần tới vô cực, nếu \(\left| {{u_n}} \right|\) có thể nhỏ hơn một số dương bé tùy ý, kể từ số hạng nào đó trở đi. Kí hiệu:\(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n}} \right) = 0{\rm{ \, hay \, }}{{\rm{u}}_{\rm{n}}} \to 0{\rm{ \, khi\, n}} \to {\rm{ + }}\infty {\rm{.}}\)
Định nghĩa 2:
Ta nói dãy số (un) có giới hạn là a hay (un) dần tới a khi n dần tới vô cực (\(n \to + \infty \)), nếu \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n} - a} \right) = 0.{\rm{ }}\)Kí hiệu: \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n}} \right) = a{\rm{ \, hay\, }}{{\rm{u}}_{\rm{n}}} \to a{\rm{ \, khi \, n}} \to {\rm{ + }}\infty {\rm{.}}\)
Chú ý: \(\mathop {\lim }\limits_{n \to + \infty } \left( {{u_n}} \right) = \lim \left( {{u_n}} \right)\).
\(\lim \frac{1}{n} = 0{\rm{ }},{\rm{ lim}}\frac{{\rm{1}}}{{{{\rm{n}}^{\rm{k}}}}} = 0{\rm{ , n}} \in \mathbb{Z}_ + ^*\)
\(\lim \left( {{q^n}} \right) = 0{\rm{ }}\) với \(\left| q \right| < 1\).
Lim(un)=c (c là hằng số) => Lim(un)=limc=c.
Một số định lý về giới hạn của dãy số:
Định lý 1: Cho dãy số (un),(vn) và (wn) có : \({{\rm{v}}_{\rm{n}}} \le {u_n} \le {w_n}{\rm{ }}\forall {\rm{n}} \in {\mathbb{N}^{\rm{*}}}\) và \(\lim \left( {{v_n}} \right) = \lim \left( {{w_n}} \right) = a{\rm{ }} \Rightarrow {\rm{lim}}\left( {{{\rm{u}}_{\rm{n}}}} \right) = a\).
Định lý 2: Nếu lim(un)=a , lim(vn)=b thì:
\(\lim \left( {{u_n} \pm {v_n}} \right) = \lim \left( {{u_n}} \right) \pm \lim \left( {{v_n}} \right) = a \pm b\)
\(\lim \left( {{u_n}.{v_n}} \right) = \lim {u_n}.\lim {v_n} = a.b\)
\(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{\lim \left( {{u_n}} \right)}}{{\lim \left( {{v_n}} \right)}} = \frac{a}{b}{\rm{ ,}}\left( {{{\rm{v}}_{\rm{n}}} \ne 0{\rm{ }}\forall {\rm{n}} \in {\mathbb{N}^{\rm{*}}};b \ne 0} \right)\)
\(\lim \sqrt {{u_n}} = \sqrt {\lim \left( {{u_n}} \right)} = \sqrt a {\rm{ ,}}\left( {{u_n} \ge 0{\rm{ ,a}} \ge {\rm{0}}} \right)\)
Tổng của cấp số nhân lùi vô hạn có công bội q ,với \(\left| q \right| < 1.\)
\(\lim {S_n} = \lim \frac{{{u_1}}}{{1 - q}}\)
Ta nói dãy số (un) dần tới vô cực \(\left( {{u_n} \to + \infty } \right)\) khi n dần tới vơ cực \(\left( {n \to + \infty } \right)\) nếu un lớn hơn một số dương bất kỳ, kể từ số hạng nào đó trở đi. Kí hiệu: lim(un)=\( + \infty \) hay un \( \to + \infty \) khi \(n \to + \infty \).
Ta nói dãy số (un) có giới hạn là \( - \infty \) khi \(n \to + \infty \) nếu lim\(\left( { - {u_n}} \right) = + \infty \).Ký hiệu: lim(un)=\( - \infty \) hay un\( \to - \infty \) khi \(n \to + \infty \).
Nếu : \(\lim \left( {{u_n}} \right) = 0{\rm{ }}\left( {{{\rm{u}}_{\rm{n}}} \ne 0{\rm{ ,}}\forall {\rm{n}} \in {\mathbb{N}^{\rm{*}}}} \right)\) thì \(\lim \frac{1}{{{u_n}}} = \infty \)
Nếu : \(\lim \left( {{u_n}} \right) = \infty {\rm{ }}\) thì \(\lim \frac{1}{{{u_n}}} = 0\)
Nếu bậc P = bậc Q = k, hệ số cao nhất của P là a0, hệ số cao nhất của Q là b0 thì chia tử số và mẫu số cho nk để đi đến kết quả : \(\lim \left( {{u_n}} \right) = \frac{{{a_0}}}{{{b_0}}}\).
Nếu bậc P nhỏ hơn bậc Q = k, thì chia tử và mẫu cho nk để đi đến kết quả :lim(un)=0.
Nếu k = bậc P > bậc Q, chia tử và mẫu cho nk để đi đến kết quả :lim(un)=\(\infty \).
Chia tử và mẫu cho nk với k chọn thích hợp.
Nhân tử và mẫu với biểu thức liên hợp.
Cho hàm số f(x) xác định trên khoảng K.Ta nói rằng hàm số f(x) có giới hạn là L khi x dần tới a nếu với mọi dãy số (xn), xn \( \in \)K và xn \( \ne \)a ,\(\forall n \in {\mathbb{N}^*}\) mà lim(xn)=a đều có lim[f(xn)]=L.Kí hiệu:\(\mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right)} \right] = L\).
Định lý 1:Nếu hàm số có giới hạn bằng L thì giới hạn đó là duy nhất.
Định lý 2:Nếu các giới hạn:\(\mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right)} \right] = L{\rm{ }},{\rm{ }}\mathop {\lim }\limits_{x \to a} \left[ {g\left( x \right)} \right] = M\) thì:
\(\mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right) \pm g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right)} \right] \pm \mathop {\lim }\limits_{x \to a} \left[ {g\left( x \right)} \right] = L \pm M\)
\(\mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right).g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right)} \right].\mathop {\lim }\limits_{x \to a} \left[ {g\left( x \right)} \right] = L.M\)
\(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{\mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right)} \right]}}{{\mathop {\lim }\limits_{x \to a} \left[ {g\left( x \right)} \right]}} = \frac{L}{M}{\rm{ , M}} \ne {\rm{0}}\)
\(\mathop {\lim }\limits_{x \to a} \sqrt {f\left( x \right)} = \sqrt {\mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right)} \right]} = \sqrt L {\rm{ ; }}f\left( x \right) \ge 0,L \ge 0\)
Cho ba hàm số f(x), h(x) và g(x) xác định trên khoảng K chứa điểm a (có thể trừ điểm a), g(x)\( \le \)f(x)\( \le \)h(x) \(\forall x \in K,x \ne a\) và \(\mathop {\lim }\limits_{x \to a} \left[ {g\left( x \right)} \right] = \mathop {\lim }\limits_{x \to a} \left[ {h\left( x \right)} \right] = L \Rightarrow \mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right)} \right] = L\).
Mở rộng khái niệm giới hạn hàm số:
Trong định nghĩa giới hạn hàm số , nếu với mọi dãy số (xn), lim(xn) = a , đều có lim[f(xn)]=\(\infty \) thì ta nói f(x) dần tới vô cực khi x dần tới a, kí hiệu: \(\mathop {\lim }\limits_{x \to a} \left[ {f\left( x \right)} \right] = \infty \).
Nếu với mọi dãy số (xn) , lim(xn) = \(\infty \) đều có lim[f(xn)] = L , thì ta nói f(x) có giới hạn là L khi x dần tới vô cực, kí hiệu:\(\mathop {\lim }\limits_{x \to \infty } \left[ {f\left( x \right)} \right] = L\).
Trong định nghĩa giới hạn hàm số chỉ đòi hỏi với mọi dãy số (xn), mà xn > a \(\forall n \in {\mathbb{N}^*}\), thì ta nói f(x) có giới hạn về bên phải tại a, kí hiệu :\(\mathop {\lim }\limits_{x \to {a^ + }} \left[ {f\left( x \right)} \right]\). Nếu chỉ đòi hỏi với mọi dãy số (xn), xn < a \(\forall n \in {\mathbb{N}^*}\) thì ta nói hàm số có giới hạn bên trái tại a , kí hiệu: \(\mathop {\lim }\limits_{x \to {a^ - }} \left[ {f\left( x \right)} \right]\)
Khi tìm giới hạn hàm số ta thường gặp các dạng sau:
Giới hạn của hàm số dạng: \(\mathop {\lim }\limits_{x \to a} \frac{{f\left( x \right)}}{{g\left( x \right)}}{\rm{ }}\left( {\frac{{\rm{0}}}{{\rm{0}}}} \right)\)
Nếu f(x) , g(x) là các hàm đa thức thì có thể chia tử số , mẫu số cho (x-a) hoặc (x-a)2.
Nếu f(x) , g(x) là các biểu thức chứa căn thì nhân tử và mẫu cho các biểu thức liên hợp.
Giới hạn của hàm số dạng: \(\mathop {\lim }\limits_{x \to \infty } \frac{{f\left( x \right)}}{{g\left( x \right)}}{\rm{ }}\left( {\frac{\infty }{\infty }} \right)\)
Chia tử và mẫu cho xk với k chọn thích hợp. Chú ý rằng nếu \(x \to + \infty \) thì coi như x>0, nếu \(x \to - \infty \) thì coi như x<0 khi đưa x ra hoặc vào khỏi căn bậc chẵn.
Giới hạn của hàm số dạng: \(\mathop {\lim }\limits_{x \to \infty } \left[ {f\left( x \right).g\left( x \right)} \right]{\rm{ }}\left( {{\rm{0}}{\rm{.}}\infty } \right)\). Ta biến đổi về dạng: \(\left( {\frac{\infty }{\infty }} \right)\)
Giới hạn của hàm số dạng: \(\mathop {\lim }\limits_{x \to \infty } \left[ {\sqrt {f\left( x \right)} - \sqrt {g\left( x \right)} } \right]{\rm{ }}\left( {\infty {\rm{ - }}\infty } \right)\)
Đưa về dạng: \(\mathop {\lim }\limits_{x \to \infty } \frac{{f\left( x \right) - g\left( x \right)}}{{\sqrt {f\left( x \right)} + \sqrt {g\left( x \right)} }}\)
Cho hàm số f(x) xác định trên khoảng (a;b). Hàm số được gọi là liên tục tại điểm x0 \( \in \) (a;b) nếu:\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right)} \right] = f\left( {{x_0}} \right)\).Điểm x0 tại đó f(x) không liên tục gọi là điểm gián đoạn của hàm số.
f(x) xác định trên khoảng (a;b), liên tục tại điểm x0 \( \in \) (a;b) \( \Leftrightarrow \mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right)} \right] = f\left( {{x_0}} \right)\).
f(x) xác định trên khoảng (a;b) được gọi là liên tục trên khoảng (a;b) nếu nó liên tục tại mọi điểm thuộc khoảng ấy.
f(x) xác định trên khoảng [a;b] được gọi là liên tục trên khoảng [a;b] nếu nó liên tục trên khoảng (a;b) và \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {a^ + }} \left[ {f\left( x \right)} \right] = f\left( a \right)\\\mathop {\lim }\limits_{x \to {b^ - }} \left[ {f\left( x \right)} \right] = f\left( b \right)\end{array} \right.\)
Định lý 1: f(x) và g(x) liên tục tại x0 thì:\(f\left( x \right) \pm g\left( x \right){\rm{ , }}f\left( x \right).g\left( x \right){\rm{ , }}\frac{{f\left( x \right)}}{{g\left( x \right)}}{\rm{ }}\left( {g\left( x \right) \ne 0} \right)\) cũng liên tục tại x0 .
Đinh lý 2: Các hàm đa thức, hàm hữu tỷ, hàm lượng giác liên tục trên tập xác định của chúng.
Định lý 3: f(x) liên tục trên đoạn [a;b] thì nó đạt GTLN, GTNN và mọi giá trị trung giữa GTLN và GTNN trên đoạn đó.
Hệ quả: Nếu f(x) liên tục trên đoạn [a;b] và f(a).f(b)<0 thì tồn tại ít nhất một điểm c\( \in \)(a;b) sao cho f(c) = 0 . Tức là có ít nhất một nghiệm thuộc khoảng (a;b).
Tìm \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {g\left( x \right)} \right]\).Hàm số liên tục tại x0 \( \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} \left[ {g\left( x \right)} \right] = a\).
Xét tính liên tục của hàm số dạng: \(f\left( x \right) = \left\{ \begin{array}{l}g\left( x \right){\rm{ }}\left( {{\rm{x < }}{{\rm{x}}_{\rm{0}}}} \right)\\a{\rm{ }}\left( {{\rm{x = }}{{\rm{x}}_{\rm{0}}}} \right)\\h\left( x \right){\rm{ }}\left( {{\rm{x > }}{{\rm{x}}_{\rm{0}}}} \right)\end{array} \right.\)
Tìm : \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to x_0^ - } \left[ {g\left( x \right)} \right]\\\mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to x_0^ + } \left[ {g\left( x \right)} \right]\\f\left( {{x_0}} \right)\end{array} \right.\). Hàm số liên tục tại x = x0 \( \Leftrightarrow \mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right)} \right] = f\left( {{x_0}} \right) = a\).
Chứng tỏ f(x) liên tục trên đoạn [a;b].
Chứng tỏ f(a).f(b)<0
Khi đó f(x) = 0 có ít nhất một nghiệm thuộc (a;b).
Nếu chưa có (a;b) thì ta cần tính các giá trị f(x) để tìm a và b. Muốn chứng minh f(x)=0 có hai , ba nghiệm thì ta tìm hai , ba khoảng rời nhau và trên mỗi khoảng f(x)=0 đều có nghiệm.
Tìm các giới hạn:
a) \(\lim {\rm{ }}\sin \frac{1}{n}.\)
b) \({\rm{lim cos}}\frac{{2n + 5}}{{3{n^2} - 4n + 1}}\)
a) \(\lim \frac{1}{n} = 0 \Rightarrow \lim {\rm{ }}\sin \frac{1}{n} = \sin 0 = 0.\)
b) \({\rm{lim cos}}\frac{{2n + 5}}{{3{n^2} - 4n + 1}} = \lim \frac{{\frac{2}{n} + \frac{5}{{{n^2}}}}}{{3 - \frac{4}{n} + \frac{1}{{{n^2}}}}} = 0 \Rightarrow {\rm{lim cos}}\frac{{2n + 5}}{{3{n^2} - 4n + 1}} = c{\rm{os}}0 = 1.\)
Tính các giới hạn:
a) \({\rm{lim }}\frac{1}{n}\sin (2n + 1).\)
b) \({\rm{lim }}\frac{5}{{2n + 3}}c{\rm{os}}({n^2} + 2n - 1).\)
a) \(sin(2n + 1) \le 1 \Rightarrow 0 \le \left| {\frac{1}{n}\sin (2n + 1)} \right| \le \frac{1}{n} \to 0 \Rightarrow \lim \frac{1}{n}\sin (2n + 1) = 0.\)
b) \(\left| {c{\rm{os}}({n^2} + 2n - 1) \le 1} \right| \Rightarrow 0 \le \left| {\frac{5}{{2n + 3}}c{\rm{os}}({n^2} + 2n - 1)} \right| \le \frac{5}{{2n + 3}} \to 0\)
\( \Rightarrow \lim \frac{5}{{2n + 3}}c{\rm{os}}({n^2} + 2n - 1) = 0.\)
Tính các giới hạn:
a) \(\lim \frac{{4{n^2} + 5n - 1}}{{5{n^3} + 2{n^2} + 4n + 1}}.\)
b) \(\lim \frac{{\sqrt {4{n^2} + 5n + 3} }}{{3n + 2}}.\)
c) \({\rm{lim}}\sqrt {4{n^2} + 5n + 3} - 2n\)
a) \(\lim \frac{{4{n^2} + 5n - 1}}{{5{n^3} + 2{n^2} + 4n + 1}} = \lim \frac{{\frac{4}{n} + \frac{5}{{{n^2}}} - \frac{1}{{{n^3}}}}}{{5 + \frac{2}{n} + \frac{4}{{{n^2}}} + \frac{1}{{{n^3}}}}} = \lim \frac{0}{5} = 0.\)
b) \(\lim \frac{{\sqrt {4{n^2} + 5n + 3} }}{{3n + 2}} = \lim \frac{{\frac{{\sqrt {4{n^2} + 5n + 3} }}{n}}}{{\frac{{3n + 2}}{n}}} = \lim \frac{{\sqrt {4 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{3 + \frac{2}{n}}} = \frac{2}{3}.\)
c) \({\rm{lim}}\sqrt {4{n^2} + 5n + 3} - 2n = \lim \frac{{(\sqrt {4{n^2} + 5n + 3} - 2n)(\sqrt {4{n^2} + 5n + 3} + 2n)}}{{\sqrt {4{n^2} + 5n + 3} + 2n}}\)
\( = \lim \frac{{3n + 3}}{{\sqrt {4{n^2} + 5n + 3} + 2n}} = \frac{3}{4}\)
Tính các giới hạn:
a) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 2{x^2} + 3x - 2}}{{{x^2} - 3x + 2}}.\)
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {3x + 1} - 2}}{{x - 1}}{\rm{ }}{\rm{.}}\)
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{2x - 1}} - 1}}{{x - 1}}.\)
d) \(\mathop {\lim }\limits_{x \to + \infty } (\sqrt {{x^2} + 2x + 3} - x)\)
a) \(\mathop {\lim }\limits_{x \to - 1} \frac{{{x^2} - x - 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} \frac{{(x + 1)(x - 2)}}{{x + 1}} = \mathop {\lim }\limits_{x \to - 1} (x - 2) = - 3\)
b) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {3x + 1} - 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{(\sqrt {3x + 1} - 2)(\sqrt {3x + 1} + 2)}}{{(x - 1)(\sqrt {3x + 1} + 2)}}\)
\( = \mathop {\lim }\limits_{x \to 1} \frac{{3(x - 1)}}{{(x - 1)(\sqrt {3x + 1} + 2)}} = \mathop {\lim }\limits_{x \to 1} \frac{3}{{(\sqrt {3x + 1} + 2)}} = \frac{3}{4}\)
c) \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt[3]{{2x - 1}} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {\frac{{\sqrt[3]{{2x - 1}} - 1}}{{x - 1}}} \right)\left( {\sqrt[3]{{{{(2x - 1)}^2}}} + \sqrt[3]{{2x - 1}} + 1} \right)}}{{(x - 1)(\sqrt[3]{{{{(2x - 1)}^2}}} + \sqrt[3]{{{{(2x - 1)}^2}}} + 1)}}\)
\( = \mathop {\lim }\limits_{x \to 1} \frac{{2(x - 1)}}{{(x - 1)(\sqrt[3]{{{{(2x - 1)}^2}}} + \sqrt[3]{{{{(2x - 1)}^2}}} + 1)}} = \mathop {\lim }\limits_{x \to 1} \frac{2}{{\sqrt[3]{{{{(2x - 1)}^2}}} + \sqrt[3]{{{{(2x - 1)}^2}}} + 1}} = \frac{2}{3}.\)
d) \(\mathop {\lim }\limits_{x \to + \infty } (\sqrt {{x^2} + 2x + 3} - x) = \mathop {\lim }\limits_{x \to + \infty } \frac{{(\sqrt {{x^2} + 2x + 3} - x)(\sqrt {{x^2} + 2x + 3} + x)}}{{(\sqrt {{x^2} + 2x + 3} + x)}}\)
\( = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 3}}{{(\sqrt {{x^2} + 2x + 3} + x)}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2 + \frac{3}{x}}}{{(\sqrt {1 + \frac{2}{x} + \frac{3}{{{x^2}}}} + 1)}} = 1.\)
Cho hàm số: \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 1}}{{x - 1}}{\rm{ }}\left( {{\rm{x}} \ne {\rm{1}}} \right)\\{\rm{a }}\left( {{\rm{x = 1}}} \right)\end{array} \right.\) a là hằng số. Xét tính liên tục của hàm số tại x0 = 1.
Hàm số xác định với mọi x thuộc R.
Ta có f(1) = a.
\(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to 1} \left( {x + 1} \right) = 2\)
Nếu a=2 thì hàm số liên tục tại x0 = 1.
Nếu a\( \ne \)2 thì hàm số gián đoạn tại x0 = 1.
Cho hàm số: \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + 1{\rm{ }}\left( {{\rm{x}} > {\rm{0}}} \right)\\{\rm{x }}\left( {{\rm{x}} \le {\rm{0}}} \right)\end{array} \right.\). Xét tính liên tục của hàm số tại x0 = 0.
Hàm số xác định với mọi x thuộc R.
Ta có f(0) = 0
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {0^ - }} \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {0^ - }} x = 0\\\mathop {\lim }\limits_{x \to {0^ + }} \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {0^ + }} \left( {{x^2} + 1} \right) = 1{\rm{ }} \ne {\rm{ 0 = }}\mathop {\lim }\limits_{x \to {0^ - }} \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {0^ - }} x\end{array}\).
Vậy hàm số không liên tục tại x0 = 0.
Cho hàm số: \(f\left( x \right) = \left\{ \begin{array}{l}ax + 2{\rm{ }}\left( {{\rm{x}} \ge {\rm{1}}} \right)\\{{\rm{x}}^{\rm{2}}}{\rm{ + x - 1 }}\left( {{\rm{x}} < {\rm{1}}} \right)\end{array} \right.\) . Xét tính liên tục của hàm số trên toàn trục số.
x >1 ta có f(x) = ax +2 hàm số liên tục.
x <1 ta có f(x) = x2+x-1 hàm số liên tục.
Khi x = 1:
Ta có f(1) = a+2
\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {1^ + }} \left( {ax + 2} \right) = a + 2\\\mathop {\lim }\limits_{x \to {1^ - }} \left[ {f\left( x \right)} \right] = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + x - 1} \right) = 1\end{array}\).
Hàm số liên tục tại x0 = 1 nếu a = -1.
Hàm số gián đoạn tại x0 = 1 nếu a \( \ne \) -1.
Vậy hàm số liên tục trên toàn trục số nếu a = -1.Hàm số liên tục trên \(\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)\) nếu a \( \ne \) -1.
Nội dung bài ôn tập chương Giới hạn sẽ giúp các em hệ thống hóa lại toàn bộ kiến thức đã được học ở Chương IV Đại số và Giải tích 11. Bên cạnh đó các em có thể đánh giá mức độ hiểu bài của mình thông qua bài kiểm tra Trắc nghiệm với những câu hỏi có mức độ khó từ cơ bản đến nâng cao.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Ôn tập chương IV để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
\(\mathop {\lim }\limits_{x \to - 1} \left| {4{x^3} - 2x - 3} \right|\) có giá trị là bao nhiêu?
Câu 6 - Câu 15: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Ôn tập chương IV sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.
Bài tập 55 trang 177 SGK Toán 11 NC
Bài tập 56 trang 177 SGK Toán 11 NC
Bài tập 57 trang 177 SGK Toán 11 NC
Bài tập 58 trang 178 SGK Toán 11 NC
Bài tập 59 trang 178 SGK Toán 11 NC
Bài tập 60 trang 178 SGK Toán 11 NC
Bài tập 61 trang 178 SGK Toán 11 NC
Bài tập 62 trang 178 SGK Toán 11 NC
Bài tập 63 trang 179 SGK Toán 11 NC
Bài tập 64 trang 179 SGK Toán 11 NC
Bài tập 65 trang 180 SGK Toán 11 NC
Bài tập 66 trang 180 SGK Toán 11 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247