\( \bullet \) Cho hàm số \(y = f(x)\) xác định trên khoảng K và \({x_0} \in K\)
1) Hàm số \(y = f(x)\) liên tục tại \({x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f(x) = f({x_0})\)
2) Hàm số \(y = f(x)\) không liên tục tại \({x_0}\) ta nói hàm số gián đoạn tại \({x_0}\)
\( \bullet \) \(y = f(x)\) liên tục trên một khoảng nếu nó kiên tục tại mọi điểm của khoảng đó.
\( \bullet \) \(y = f(x)\) liên tục trên đoạn \(\left[ {a;b} \right]\) nếu nó liên tục trên \(\left( {a;b} \right)\) và
\(\mathop {\lim }\limits_{x \to {a^ + }} f(x) = f(a)\), \(\mathop {\lim }\limits_{x \to {b^ - }} f(x) = f(b)\).
Định lý 1:
a) Hàm số đa thức liên tục trên tập R
b) Hàm số phân thức hữu tỉ và hàm số lượng giác liên tục trên từng khoảng xác định của chúng
Định lý 2. Các hàm số \(y = f(x),{\rm{ }}y = g(x)\) liên tục tại \({x_0}\). Khi đó tổng, hiệu, tích liên tục tai x0, thương \(y = \frac{{f(x)}}{{g(x)}}\) liên tục nếu \(g({x_0}) \ne 0\).
Định lý 3. Cho hàm số f liên tục trên đoạn \(\left[ {a;b} \right]\).
Nếu \(f(a) \ne f(b)\) và M là một số nằm giữa \(f(a){\rm{ }},f(b)\) thì tồn tại ít nhất một số \(c \in \left( {a;b} \right)\) sao cho \(f(c) = M{\rm{ }}\)
Hệ quả: Cho hàm số f liên tục trên đoạn \(\left[ {a;b} \right]\).
Nếu \(f(a){\rm{ }}f(b) < 0\) thì tồn tại ít nhất một số \(c \in \left( {a;b} \right)\) sao cho \(f(c) = 0\).
Chú ý: Ta có thể phát biểu hệ quả trên theo cách khác như sau :
Cho hàm số f liên tục trên đoạn \(\left[ {a;b} \right]\). Nếu \(f(a){\rm{ }}f(b) < 0\) thì phương trình \(f(x) = 0\) có ít nhất một nghiệm thuộc \((a;b)\).
Phương pháp:
\( \bullet \) Tìm giới hạn của hàm số \(y = f(x)\) khi \(x \to {x_0}\) và tính \(f({x_0})\)
\( \bullet \) Nếu tồn tại \(\mathop {\lim }\limits_{x \to {x_0}} f(x)\) thì ta so sánh \(\mathop {\lim }\limits_{x \to {x_0}} f(x)\) với \(f({x_0})\).
Chú ý:
1. Nếu hàm số liên tục tại \({x_0}\) thì trước hết hàm số phải xác định tại điểm đó
2. \(\mathop {\lim }\limits_{x \to {x_0}} f(x) = l \Leftrightarrow \mathop {\lim }\limits_{x \to x_0^ + } f(x) = \mathop {\lim }\limits_{x \to x_0^ - } f(x) = l\).
3. Hàm số \(y = \left\{ \begin{array}{l}f(x){\rm{ khi }}x \ne {x_0}\\k{\rm{ khi }}x = {x_0}\end{array} \right.\) liên tục tại \(x = {x_0} \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f(x) = k\).
4. Hàm số \(f(x) = \left\{ \begin{array}{l}{f_1}(x){\rm{ khi }}x \ge {x_0}\\{f_2}(x){\rm{ khi }}x < {x_0}\end{array} \right.\) liên tục tại điểm \(x = {x_0}\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to x_0^ + } {f_1}(x) = \mathop {\lim }\limits_{x \to x_0^ - } {f_2}(x) = {f_1}({x_0})\).
Chú ý:
\( \bullet \) Hàm số \(y = \left\{ \begin{array}{l}f(x){\rm{ khi }}x \ne {x_0}\\k{\rm{ khi }}x = {x_0}\end{array} \right.\) liên tục tại \(x = {x_0}\) khi và chỉ khi
\(\mathop {\lim }\limits_{x \to {x_0}} f(x) = k\).
\( \bullet \) Hàm số \(y = \left\{ \begin{array}{l}f(x){\rm{ khi }}x > {x_0}\\g(x){\rm{ khi }}x \le {x_0}\end{array} \right.\) liên tục tại \(x = {x_0}\) khi và chỉ khi
\(\mathop {\lim }\limits_{x \to x_0^ + } f(x) = \mathop {\lim }\limits_{x \to x_0^ - } g(x)\).
Xét tính liên tục của hàm số sau tại \(x = 3\)
a) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^3} - 27}}{{{x^2} - x - 6}}\,\,\,{\rm{khi}}\,x \ne 3}\\{\frac{{10}}{3}\,\,\,{\rm{ khi}}\,\,x = 3}\end{array}} \right.\)
b) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{x - 3}}{{\sqrt {2x + 3} - 3}}\,\,\,{\rm{khi }}\,x < 3}\\{\,\,{{\left( {x - 1} \right)}^2}\,\,\,\,\,\,\,\,\,{\rm{khi }}\,\,x \ge 3}\end{array}} \right.\)
a) Hàm số xác định trên \(\mathbb{R}\)
Ta có \(f(3) = \frac{{10}}{3}\) và \(\mathop {\lim }\limits_{x \to 3} f(x) = \mathop {\lim }\limits_{x \to 3} \frac{{{x^3} - 27}}{{{x^2} - x - 6}} = \mathop {\lim }\limits_{x \to 3} \frac{{(x - 3)({x^2} + 3x + 9)}}{{(x - 3)(x + 2)}}\)
\( = \mathop {\lim }\limits_{x \to 3} \frac{{{x^2} + 3x + 9}}{{x + 2}} = \frac{{27}}{5} \ne f(3)\).
Vậy hàm số không liên tục tại \(x = 3\).
b) Ta có \(f(3) = 4\) và \(\mathop {\lim }\limits_{x \to {3^ + }} f(x) = \mathop {\lim }\limits_{x \to {3^ + }} {(x - 1)^2} = 4\) ; \(\mathop {\lim }\limits_{x \to {3^ - }} f(x) = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{x - 3}}{{\sqrt {2x + 3} - 3}} = \mathop {\lim }\limits_{x \to {3^ - }} \frac{{\sqrt {2x + 3} + 3}}{2} = 3 \ne \mathop {\lim }\limits_{x \to {3^ + }} f(x)\)
Vậy hàm số gián đoạn tại \(x = 3\).
Xét tính liên tục của hàm số sau tại điểm chỉ ra.
a) \(f(x) = \left\{ \begin{array}{l}{x^2} + 1{\rm{ khi }}x \ne 1\\{\rm{2 khi }}x = 1\end{array} \right.\) tại điểm \({x_0} = 1\)
b) \(f(x) = \left\{ \begin{array}{l}\frac{{\left| {{x^2} - x - 2} \right|}}{{x + 1}}{\rm{ khi }}x \ne - 1\\1{\rm{ khi }}x = - 1{\rm{ }}\end{array} \right.\)
a) Ta có \(f(1) = 2\)và \(\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} ({x^2} + 1) = 2 = f(1)\)
Vậy hàm số liên tục tại điểm \(x = 1\).
b) Ta có \(f( - 1) = 1\)
\(\mathop {\lim }\limits_{x \to - {1^ + }} f(x) = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{\left| {(x + 1)(x - 2)} \right|}}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ + }} (2 - x) = 3\)
\(\mathop {\lim }\limits_{x \to - {1^ - }} f(x) = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{\left| {(x + 1)(x - 2)} \right|}}{{x + 1}} = \mathop {\lim }\limits_{x \to - {1^ - }} (x - 2) = - 3 \ne \mathop {\lim }\limits_{x \to - {1^ + }} f(x)\)
Suy ra không tồn tại giới hạn của hàm số \(y = f(x)\) khi \(x \to - 1\).
Vậy hàm số gián đoạn tại \(x = - 1\).
Tìm \(a\) để hàm số sau liên tục tại \(x = 2\)
a) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\,\frac{{\sqrt[3]{{4x}} - 2}}{{x - 2}}\,\,{\rm{ khi }}\,x \ne 2}\\{a\,\,\,{\rm{ khi }}\,\,x = 2}\end{array}} \right.\)
b) \(f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^4} - 5{x^2} + 4}}{{{x^3} - 8}}\,\,\,\,\,{\rm{khi }}\,x < 2}\\{\,\,a{x^2} + x + 1\,\,\,\,\,\,\,\,\,{\rm{ khi }}\,\,x \ge 2}\end{array}} \right.\)
a) Ta có \(f(2) = a\) và \(\mathop {\lim }\limits_{x \to 2} f(x) = \mathop {\lim }\limits_{x \to 2} \frac{{\sqrt[3]{{4x}} - 2}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \frac{4}{{\sqrt[3]{{{{(4x)}^2}}} + 2\sqrt[3]{{4x}} + 4}} = \frac{1}{3}\)
Hàm số liên tục tại điểm \(x = 2 \Leftrightarrow \mathop {\lim }\limits_{x \to 2} f(x) = f(2) \Leftrightarrow a = \frac{1}{3}\).
b) Ta có : \(\mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{{x^4} - 5{x^2} + 4}}{{{x^3} - 8}} = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{({x^2} - 1)(x + 2)}}{{{x^2} + 2x + 4}} = 1\)
\(\mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {a{x^2} + x + 1} \right) = 4a + 3 = f(2)\)
Hàm số liên tục tại \(x = 2 \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} f(x) = f(2)\)
\( \Leftrightarrow 4a + 3 = 1 \Leftrightarrow a = - \frac{1}{2}\).
Phương pháp:Sử dụng các định lí về tính liên tục của hàm đa thức, lương giác, phân thức hữu tỉ …
Nếu hàm số cho dưới dạng nhiều công thức thì ta xét tính liên tục trên mỗi khoảng đã chia và tại các điểm chia của các khoảng đó.
Xét tính liên tục của các hàm số sau trên toàn trục số:
a) \(f(x) = \tan 2x + \cos x\)
b) \(f(x) = \frac{{\sqrt {x - 1} + 2}}{{{x^2} - 3x + 2}}\)
a) TXĐ: \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\frac{\pi }{2},k \in \mathbb{Z}} \right\}\)
Vậy hàm số liên tục trên \(D\)
b) Điều kiện xác định: \(\left\{ \begin{array}{l}x - 1 \ge 0\\{x^2} - 3x + 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 1\\x \ne 2\end{array} \right.\)
Vậy hàm số liên tục trên \(\left( {1;2} \right) \cup \left( {2; + \infty } \right)\).
Xác định a để hàm số \(\,f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{a^2}\left( {x - 2} \right)}}{{\sqrt {x + 2} - 2}}\,\,\,\,\,{\rm{khi}}\,x < 2}\\{\,\,\left( {1 - a} \right)x\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x \ge 2}\end{array}} \right.\) liên tục trên \(\mathbb{R}\).
Hàm số xác định trên \(\mathbb{R}\)
Với \(x < 2 \Rightarrow \) hàm số liên tục
Với \(x > 2 \Rightarrow \) hàm số liên tục
Với \(x = 2\) ta có \(\mathop {\lim }\limits_{x \to {2^ + }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} (1 - a)x = 2(1 - a) = f(2)\)
\(\mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{{a^2}(x - 2)}}{{\sqrt {x + 2} - 2}} = \mathop {\lim }\limits_{x \to {2^ - }} {a^2}(\sqrt {x + 2} + 2) = 4{a^2}\)
Hàm số liên tục trên \(\mathbb{R} \Leftrightarrow \) hàm số liên tục tại \(x = 2\)
\( \Leftrightarrow \mathop {\lim }\limits_{x \to {2^ - }} f(x) = \mathop {\lim }\limits_{x \to {2^ + }} f(x) \Leftrightarrow 4{a^2} = 2(1 - a) \Leftrightarrow a = - 1,a = \frac{1}{2}\).
Vậy \(a = - 1,a = \frac{1}{2}\) là những giá trị cần tìm.
Phương pháp:
\( \bullet \) Để chứng minh phương trình \(f(x) = 0\) có ít nhất một nghiệm trên D, ta chứng minh hàm số \(y = f(x)\) liên tục trên D và có hai số \(a,b \in D\) sao cho \(f(a).f(b) < 0\).
\( \bullet \) Để chứng minh phương trình \(f(x) = 0\) có k nghiệm trên D, ta chứng minh hàm số \(y = f(x)\) liên tục trên D và tồn tại k khoảng rời nhau \(({a_i};{a_{i + 1}})\) (i=1,2,…,k) nằm trong D sao cho \(f({a_i}).f({a_{i + 1}}) < 0\).
Chứng minh rằng phương trình sau có ít nhất một nghiệm :
a) \({x^7} + 3{x^5} - 1 = 0\)
b) \({x^2}\sin x + x\cos x + 1 = 0\)
a) Ta có hàm số \(f(x) = {x^7} + 3{x^5} - 1\) liên tục trên R và \(f(0).f(1) = - 3 < 0\)
Suy ra phương trinh \(f(x) = 0\) có ít nhất một nghiệm thuộc \((0;1)\).
b) Ta có hàm số \(f(x) = {x^2}\sin x + x\cos x + 1\) liên tục trên R và \(f(0).f(\pi ) = - \pi < 0\). Suy ra phương trinh \(f(x) = 0\) có ít nhất một nghiệm thuộc \((0;\pi )\).
Chứng minh rằng phương trình sau có đúng ba nghiệm phân biệt
a) \({x^3} - 3x + 1 = 0\)
b) \(2x + 6\sqrt[3]{{1 - x}} = 3\)
a) Hàm số \(f(x) = {x^3} - 3x + 1\), ta có hàm số liên tục trên R và
\(f( - 2) = - 1\,\,;\,\,\,f(0) = 1\,\,;\,\,f(1) = - 1\,\,;\,f(2) = 3\)
\( \Rightarrow f( - 2).f(0) = - 1 < 0\,,f(0).f(1) = - 1 < 0,f(1).f(2) = - 3 < 0\)
Suy ra phương trình có ba nghiệm phân biệt thuộc các khoảng
\(( - 2;0),(0;1),(1;2)\).
Mà f(x) là đa thức bậc ba nên f(x) chỉ có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng ba nghiệm.
b) Phương trình \( \Leftrightarrow 2x - 3 = 6\sqrt[3]{{x - 1}} \Leftrightarrow {(2x - 3)^3} - 216(x - 1) = 0\)
Xét hàm số \(f(x) = {(2x - 3)^3} - 216(x - 1)\), ta có hàm số liên tục trên R và
\(f( - 4) = - 251,f(0) = 189,f(1) = - 1,f(7) = 35\)
Suy ra\( \Rightarrow f( - 4).f(0) < 0\,,f(0).f(1) < 0,f(1).f(7) < 0\)
Suy ra phương trình có ba nghiệm phân biệt thuộc các khoảng
\(( - 4;0),(0;1),(1;7)\).
Mà f(x) là đa thức bậc ba nên f(x) chỉ có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng ba nghiệm.
Nội dung bài học sẽ tiếp tục giới thiệu đến các em khái niệm mới trong chương giới hạn đó là Hàm số liên tục và các dạng toán liên quan. Cùng với những ví dụ minh họa có hướng dẫn giải chi tiết, các em sẽ dễ dàng nắm vững được nội dung bài học.
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Toán 11 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 6 - Câu 15: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Toán 11 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK Giải tích 11 Cơ bản và Nâng cao.
Bài tập 4.43 trang 172 SBT Toán 11
Bài tập 4.44 trang 172 SBT Toán 11
Bài tập 4.45 trang 172 SBT Toán 11
Bài tập 4.46 trang 172 SBT Toán 11
Bài tập 46 trang 172 SGK Toán 11 NC
Bài tập 47 trang 172 SGK Toán 11 NC
Bài tập 48 trang 173 SGK Toán 11 NC
Bài tập 49 trang 173 SGK Toán 11 NC
Bài tập 50 trang 175 SGK Toán 11 NC
Bài tập 51 trang 175 SGK Toán 11 NC
Bài tập 52 trang 176 SGK Toán 11 NC
Bài tập 53 trang 176 SGK Toán 11 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247