Lý thuyết Bài tập

Tóm tắt bài

Đề bài

a) Phát biểu định nghĩa tích phân của hàm số \(f(x)\) trên một đoạn

b) Nêu các tính chất của tích phân. Cho ví dụ minh họa.

 

Hướng dẫn giải

a) Cho hàm số \(f(x)\) liên tục trên \([a, b]\).

Giả sử \(F(x)\) là một nguyên hàm của \(f(x)\) trên \([a, b]\).

Hiệu số \(F(b) – F(a)\) được gọi là tích phân từ \(a\) đến \(b\) (hay tích phân xác định trên đoạn \([a, b]\) của hàm số \(f(x)\).

Kí hiệu \(\int_a^b {f(x)dx} \):  hoặc 

Dấu \({\rm{[F(x)]}}{\left| {^b} \right._a} = F(b) – F(a) (1)\). (Công thức Newton – Leibniz)

Dấu được gọi là dấu tích phân, \(a\) là cận dưới và \(b\) là cận trên của tích phân

Hàm số \(f(x)\) gọi là hàm số dưới dấu tích phân,\( f(x) dx\) là biểu thức dưới dấu tích phân, \(dx\) chỉ biến số lấy tích phân là \(x\).

b) Tính chất 1: \(\int_a^b {k.f(x)dx = k\int_a^b {f(x)dx} } \) ( \(k\) là hằng số)

Tính chất 2: \(\int_a^b {{\rm{[f(x)}} \pm {\rm{g(x)]dx}} = \int_a^b {f(x)dx \pm } } \int_a^b {g(x)dx} \)

Tính chất 3: \(\int_a^b {f(x)dx = \int_a^c {f(x)dx + \int_c^b {f(x)dx} } } \) \((a < c < b).\)

Ví dụ:

a) Biết \(\int_5^9 {f(x)dx = 2.} \) Hãy tính \(\int_5^9 {( - 5).f(x)dx}. \)

b) Biết \(\int_5^9 {f(x)dx = 2} \) và \(\int_5^9 {g(x)dx = 4} .\)  Hãy tính \(\int_5^0 {{\rm{[f(x) + g(x)]dx}}}. \)

c) Biết \(\int_5^9 {f(x)dx = 2} \) và \(\int_9^{10} {f(x)dx = 3} .\)  Hãy tính \(\int_5^{10} {f(x)dx}. \)

Giải

a) Ta có: \(\int_5^9 {( - 5).f(x)dx = ( - 5)\int_5^9 {f(x)dx = ( - 5).2 =  - 10} }. \)

b) Ta có: \(\int_5^9 {{\rm{[f(x) + g(x)]dx}} = \int_5^9 {f(x)dx + \int_5^9 {g(x)dx = 2 + 4 = 6} } } .\)

c) Ta có: \(\int_5^{10} {f(x)dx = \int_5^9 {f(x)dx + \int_9^{10} {f(x)dx = 2 + 3 = 5} } }. \)

Tham khảo : Công thức toán Casio

 

Copyright © 2021 HOCTAP247