Giải các phương trình sau:
a) \((3 - 2i)z + (4 + 5i) = 7 + 3i\);
b) \((1 + 3i)z - (2 + 5i) = (2 + i)z\);
c) \( \frac{z}{4-3i} + (2 - 3i) = 5 - 2i\).
+) Sử dụng quy tắc chuyển vế đổi dấu.
+) Sử dụng công thức chia hai số phức.
Lời giải chi tiết
a) Ta có \((3 - 2i)z + (4 + 5i) = 7 + 3i \Leftrightarrow (3 - 2i)z = 7 + 3i - 4 - 5i\)
\(\Leftrightarrow (3-2i)z=3-2i \Leftrightarrow z = \frac{3-2i}{3-2i} \Leftrightarrow z = 1\).
Vậy \(z = 1\).
b) Ta có \((1 + 3i)z - (2 + 5i) = (2 + i)z \\ \Leftrightarrow (1 + 3i)z -(2 + i)z = (2 + 5i)\)
\(\Leftrightarrow (1 + 3i - 2 - i)z = 2 + 5i \\ \Leftrightarrow (-1 + 2i)z = 2 + 5i\)
\(\Leftrightarrow z = \frac{2 + 5i}{-1+2i} \\ \Leftrightarrow z=\frac{(2+5i)(-1-2i)}{1^2+2^2}\\\Leftrightarrow z=\frac{-2-4i-5i-10i^{2}}{5} \\ \Leftrightarrow z=\frac{8-9i}{5} =\frac{8}{5}-\frac{9}{5}i\)
Vậy \(z =\frac{8}{5}-\frac{9}{5}i.\)
\(\begin{array}{l}
c)\;\;\frac{z}{{4 - 3i}} + 2 - 3i = 5 - 2i\\
\Leftrightarrow \;\frac{z}{{4 - 3i}} = 5 - 2i - 2 + 3i\\
\Leftrightarrow \;\frac{z}{{4 - 3i}} = 3 + i\\
\Leftrightarrow z = \left( {3 + i} \right)\left( {4 - 3i} \right)\\
\Leftrightarrow z = 12 - 5i - 3{i^2}\\
\Leftrightarrow z = 15 - 5i.
\end{array}\)
Vậy \(z=15-5i.\)
Copyright © 2021 HOCTAP247