Lý thuyết về phép chia số phức Toán 12
Hôm nay xin phép được giới thiệu với các bạn về lý thuyết giải bài tập Toán 12 phép chia số phức!
Số phức \({z_1} = a + bi,\,\,{z_2} = c + di\,(a,b,c,d \in \mathbb{R}),\), ta có:
\(\dfrac{{c + di}}{{a + bi}} = \dfrac{{\left( {c + di} \right)(a - bi)}}{{{a^2} + {b^2}}} = \dfrac{{ac + bd}}{{{a^2} + {b^2}}} + \dfrac{{ad - bc}}{{{a^2} + {b^2}}}i\)
(Nhân cả tử và mẫu với a−bi (số phức liên hợp của mẫu)).
Chú ý:
Với số phức z≠0 ta có:
Bài 1: Tìm số phức liên hợp của số phức: \(z = (1 + i)(3 - 2i) + \dfrac{1}{{3 + i}}\)
Lời giải:
Ta có: \(z = 5 + i + \dfrac{{3 - i}}{{(3 + i)(3 - i)}} = 5 + i + \dfrac{{3 - i}}{{10}}=\dfrac{53}{10}+\dfrac{9}{10}i\)
Suy ra số phức liên hợp của số phức z là: \(\overline z = \dfrac{{53}}{{10}} - \dfrac{9}{{10}}i\)
Bài 2: Tìm môđun của số phức \(z = \dfrac{{(1 + i)(2 - i)}}{{1 + 2i}}\)
Lời giải:
\(z = \dfrac{{(1 + i)(2 - i)}}{{1 + 2i}} = \dfrac{{3 + i}}{{1 + 2i}} = \dfrac{{\left( {3 + i} \right)\left( {1 - 2i} \right)}}{{\left( {1 + 2i} \right)\left( {1 - 2i} \right)}} = \dfrac{{5 + i}}{5} = 1 + \dfrac{1}{5}i.\)
Vậy môđun của số phức z là: \(|z| = \sqrt {1 + {{\left( {\dfrac{1}{5}} \right)}^2}} = \dfrac{{\sqrt {26} }}{5}\)
Bài 3: Tìm phần thực, phần ảo và tính môđun của số phức z thỏa: \({\left( {1 + i} \right)^2}\left( {2 - i} \right)z = 8 + i + \left( {1 + 2i} \right)z.\)
Lời giải:
\({\left( {1 + i} \right)^2}\left( {2 - i} \right)z = 8 + i + \left( {1 + 2i} \right)z.\)
\(\Leftrightarrow z = \dfrac{{8 + i}}{{1 + 2i}} = \dfrac{{\left( {8 + i} \right)\left( {1 - 2i} \right)}}{{\left( {1 + 2i} \right)\left( {1 - 2i} \right)}} = \dfrac{{10 - 15i}}{5} = 2 - 3i.\)
Vậy z có phần thực bằng 2, phần ảo bằng -3, môđun \(\left| z \right| = \sqrt {{2^2} + {{\left( { - 3} \right)}^2}} = \sqrt {13} .\)
Hy vọng với những kiến thức mà muốn chia sẻ như sau về lý thuyết phép chia các số phức. Ngoài ra bạn có thêm tham khảo thêm Giải bài tập - Bài 2. Phép cộng trừ nhân chia số phức!
Copyright © 2021 HOCTAP247