Trang chủ Lớp 12 Toán Lớp 12 SGK Cũ Bài 2. Lũy thừa với số mũ thực Bài 19 trang 82 SGK Đại số và Giải tích 12 Nâng cao

Bài 19 trang 82 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 19. Đơn giản biểu thức

a) \({a^{ - 2\sqrt 2 }}{\left( {{1 \over {{a^{ - \sqrt 2  - 1}}}}} \right)^{\sqrt 2  + 1}}\);         

b) \({\left( {{{{a^{\sqrt 3 }}} \over {{b^{\sqrt 3  - 1}}}}} \right)^{\sqrt 3  + 1}}{{{a^{ - 1 - \sqrt 3 }}} \over {{b^{ - 2}}}};\)

c) \({{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1;\) 

d) \(\sqrt {{{\left( {{x^\pi } + {y^\pi }} \right)}^2} - {{\left( {{4^{{1 \over \pi }}}xy} \right)}^\pi }} ;\)

Hướng dẫn giải

a) \({a^{ - 2\sqrt 2 }}{\left( {{1 \over {{a^{ - \sqrt 2  - 1}}}}} \right)^{\sqrt 2  + 1}} = {a^{ - 2\sqrt 2 }}{\left( {{a^{\sqrt 2  + 1}}} \right)^{\sqrt 2  + 1}} = {a^{ - 2\sqrt 2 }}{a^{3 + 2\sqrt 2 }} = {a^3}\)

b) \({\left( {{{{a^{\sqrt 3 }}} \over {{b^{\sqrt 3  - 1}}}}} \right)^{\sqrt 3  + 1}}{{{a^{ - 1 - \sqrt 3 }}} \over {{b^{ - 2}}}} = {{{a^{3 + \sqrt 3 }}} \over {{b^2}}}.{{{a^{ - 1 - \sqrt 3 }}} \over {{b^{ - 2}}}} = {a^2}\)

c) \({{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1 = {{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }} + {{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}}\)

\( = {{2{a^{2\sqrt 2 }} - 2{a^{\sqrt 2 }}{b^{\sqrt 3 }}} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} = {{2{a^{\sqrt 2 }}\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)} \over {{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} = {{2{a^{\sqrt 2 }}} \over {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}}}\)

d) \(\sqrt {{{\left( {{x^\pi } + {y^\pi }} \right)}^2} - {{\left( {{4^{{1 \over \pi }}}xy} \right)}^\pi }}  = \sqrt {{x^{2\pi }} + {y^{2\pi }} - 2{x^\pi }{y^\pi }}  = \sqrt {{{\left( {{x^\pi } - {y^\pi }} \right)}^2}}  = \left| {{x^\pi } - {y^\pi }} \right|\).

Copyright © 2021 HOCTAP247