Trang chủ Lớp 12 Toán Lớp 12 SGK Cũ Bài 2. Lũy thừa với số mũ thực Bài 21 trang 82 SGK Đại số và Giải tích 12 Nâng cao

Bài 21 trang 82 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 21. Giải các phương trình sau bằng cách đặt \(t = \root 4 \of x \):

a) \(\sqrt x  + \root 4 \of x  = 2;\)                        b) \(\sqrt x  - 3\root 4 \of x  + 2 = 0\).

Hướng dẫn giải

a) Điều kiện \(x \ge 0\)
Đặt \(t = \root 4 \of x \left( {t \ge 0} \right)\), ta được phương trình \({t^2} + t = 2\).

Ta có

\({t^2} + t = 2 \Leftrightarrow {t^2} + t - 2 = 0 \Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr
t = - 2\text{ loại } \hfill \cr} \right.\) \( \Leftrightarrow \root 4 \of x  = 1 \Leftrightarrow x = 1\)

Vậy tập nghiệm phương trình là S =\(\left\{ 1 \right\}\)

b) Điều kiện \(x \ge 0\). Đặt \(t = \root 4 \of x \,\,\left( {t \ge 0} \right)\) ta được phương trình

\({t^2} - 3t + 2 = 0 \Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr
t = 2 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
\root 4 \of x = 1 \hfill \cr
\root 4 \of x = 2 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 1 \hfill \cr
x = 16 \hfill \cr} \right.\)

Vậy \(S = \left\{ {1;16} \right\}\)

Copyright © 2021 HOCTAP247