Bài 42 Trang 175 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 42

a) \(y = {1 \over {{x^2}}}\cos \left( {{1 \over x} - 1} \right)\);           b) \(y = {x^3}{\left( {1 + {x^4}} \right)^3}\);
c) \(y = {{x{e^{2x}}} \over 3}\);                            d) \(y = {x^2}{e^x}\).

Hướng dẫn giải

a) Đặt \(u = {1 \over x} - 1 \Rightarrow du =  - {1 \over {{x^2}}}dx \Rightarrow {{dx} \over {{x^2}}} =  - du\)
Do đó \(\int {{1 \over {{x^2}}}} \cos \left( {{1 \over x} - 1} \right)dx =  - \int {\cos udu =  - \sin u + C =  - \sin \left( {{1 \over x} - 1} \right)}  + C\)

b) Đặt \(u = 1 + {x^4} \Rightarrow du = 4{x^3}dx \Rightarrow {x^3}dx = {{du} \over 4}\)

\(\int {{x^3}{{\left( {1 + {x^4}} \right)}^3}dx = {1 \over 4}\int {{u^3}du = {{{u^4}} \over {16}} + C = {1 \over {16}}} } {\left( {1 + {x^4}} \right)^4} + C\)

c) Đặt 

\(\left\{ \matrix{
u = {x \over 3} \hfill \cr
dv = {e^{2x}}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = {1 \over 3}dx \hfill \cr
v = {1 \over 2}{e^{2x}} \hfill \cr} \right.\)

Suy ra: \(\int {{{x{e^{2x}}} \over 3}dx = {1 \over 6}x{e^{2x}} - {1 \over 6}\int {{e^{2x}}dx = {1 \over 6}x{e^{2x}} - {1 \over {12}}{e^{2x}} + C} } \)

d) Đặt 

\(\left\{ \matrix{
u = {x^2} \hfill \cr
dv = {e^x}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = 2xdx \hfill \cr
v = {e^x} \hfill \cr} \right.\)

Suy ra \(\int {{x^2}{e^x}dx = {x^2}{e^x} - 2\int {x{e^x}dx} } \)   (1)

Đặt 

\(\left\{ \matrix{
u = x \hfill \cr
dv = {e^x}dx \hfill \cr} \right. \Rightarrow \left\{ \matrix{
du = dx \hfill \cr
v = {e^x} \hfill \cr} \right.\)

Do đó: \(\int {x{e^x}dx = x{e^x} - \int {{e^x}dx = x{e^x} - {e^x} + C} } \)

Từ (1) suy ra \(\int {{x^2}{e^x}dx = {x^2}{e^x} - 2x{e^x} + 2{e^x} + C = {e^x}\left( {{x^2} - 2x + 2} \right) + C} \)

Copyright © 2021 HOCTAP247