Bài 55 Trang 177 SGK Đại số và Giải tích 12 Nâng cao

Lý thuyết Bài tập

Tóm tắt bài

Đề bài

Bài 55. Cho hình phẳng A được giới hạn bởi đồ thị hàm số : \(y = \sqrt {\cos x} \left( {0 \le x \le {\pi  \over 2}} \right)\,\) và hai trục tọa độ. Tính thể tích khối tròn xoay tọa thành khi quay hình đó quay trục tung.

Hướng dẫn giải

Hoành độ giao điểm của hàm số \(y = \sqrt {\cos x} \left( {0 \le x \le {\pi  \over 2}} \right)\,\)với trục hoành là nghiệm phương trình : 

\(\left\{ \matrix{
\sqrt {\cos x} = 0 \hfill \cr
0 \le x \le {\pi \over 2} \hfill \cr} \right. \Leftrightarrow x = {\pi \over 2}\)

Vậy thể tích cần tìm là : \(V = \pi \int\limits_0^{{\pi  \over 2}} {\cos xdx = \left. {\pi {\mathop{\rm s}\nolimits} {\rm{inx}}} \right|_0^{{\pi  \over 2}}}  = \pi \)

Copyright © 2021 HOCTAP247