Tính chất của phân thức:
\(\frac{A}{B} = \frac{{A.M}}{{B.M}}\) (M là một đa thức khác đa thức 0).
\(\frac{A}{B} = \frac{{A:N}}{{B:N}}\) (N là một nhân tử chung).
Quy tắc đổi dấu:
\(\frac{A}{B} = \frac{{ - A}}{{ - B}}\)
Bài 1: Chứng minh các phân số sau bằng nhau:
a.\(\frac{{5 - 2x}}{{ - 7x}} = \frac{{2x - 5}}{{7x}}\)
b.\(\frac{{{{(3x - 1)}^3}}}{{ - 5\left( {1 - 3x} \right)}} = \frac{{{{\left( {1 - 3x} \right)}^2}}}{5}\)
Hướng dẫn:
a.
\(\begin{array}{l} \frac{{5 - 2x}}{{ - 7x}} = \frac{{2x - 5}}{{7x}}\\ \frac{{ - 1.\left( {5 - 2x} \right)}}{{ - 1.\left( { - 7x} \right)}} = \frac{{2x - 5}}{{7x}}\\ \frac{{2x - 5}}{{7x}} = \frac{{2x - 5}}{{7x}} \end{array}\)
b.
\(\begin{array}{l} \frac{{{{(3x - 1)}^3}}}{{ - 5\left( {1 - 3x} \right)}} = \frac{{{{\left( {1 - 3x} \right)}^2}}}{5}\\ \frac{{\left( {3x - 1} \right).{{(3x - 1)}^2}}}{{ - 5\left( {1 - 3x} \right)}} = \frac{{{{\left( {1 - 3x} \right)}^2}}}{5}\\ \frac{{ - \left( {1 - 3x} \right).{{(3x - 1)}^2}}}{{ - 5\left( {1 - 3x} \right)}} = \frac{{{{\left( {1 - 3x} \right)}^2}}}{5}\\ \frac{{{{(3x - 1)}^2}}}{5} = \frac{{{{\left( {1 - 3x} \right)}^2}}}{5}\\ \frac{{{{\left( {1 - 3x} \right)}^2}}}{5} = \frac{{{{\left( {1 - 3x} \right)}^2}}}{5} \end{array}\)
Bài 2: Điền đa thức thích hợp vào chỗ trống:
\(\frac{{{x^5} + 2{x^3}}}{{\left( {{x^2} + 2} \right)\left( {x - 3} \right)}} = \frac{{...}}{{x - 3}}\)
Hướng dẫn:
\(\begin{array}{l} \frac{{{x^5} + 2{x^3}}}{{\left( {{x^2} + 2} \right)\left( {x - 3} \right)}} = \frac{{...}}{{x - 3}}\\ \frac{{{x^3}\left( {{x^2} + 2} \right)}}{{\left( {{x^2} + 2} \right)\left( {x - 3} \right)}} = \frac{{...}}{{x - 3}}\\ \frac{{{x^3}}}{{x - 3}} = \frac{{{x^3}}}{{x - 3}} \end{array}\)
Vậy: đa thức được điền vào là đơn thức \({x^3}\)
Bài 3: Dùng tính chất cơ bản của hai phân thức chứng tỏ rằng:
\(\frac{{{y^2} - {x^2}}}{{{x^3} - 3{x^2}y + 3x{y^2} - {y^3}}} = \frac{{ - \left( {x + y} \right)}}{{{x^2} - 2xy + {y^2}}}\)
Hướng dẫn:
\(\begin{array}{l} \frac{{{y^2} - {x^2}}}{{{x^3} - 3{x^2}y + 3x{y^2} - {y^3}}} = \frac{{ - \left( {x + y} \right)}}{{{x^2} - 2xy + {y^2}}}\\ \frac{{ - \left( {{x^2} - {y^2}} \right)}}{{{{\left( {x - y} \right)}^3}}} = \frac{{ - \left( {x + y} \right)}}{{{x^2} - 2xy + {y^2}}}\\ \frac{{ - \left( {x - y} \right)\left( {x + y} \right)}}{{{{\left( {x - y} \right)}^3}}} = \frac{{ - \left( {x + y} \right)}}{{{x^2} - 2xy + {y^2}}}\\ \frac{{ - \left( {x + y} \right)}}{{{{\left( {x - y} \right)}^2}}} = \frac{{ - \left( {x + y} \right)}}{{{x^2} - 2xy + {y^2}}}\\ \frac{{ - \left( {x + y} \right)}}{{{x^2} - 2xy + {y^2}}} = \frac{{ - \left( {x + y} \right)}}{{{x^2} - 2xy + {y^2}}} \end{array}\)
Qua bài giảng Tính chất cơ bản của phân thức này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 8 Bài 2 cực hay có đáp án và lời giải chi tiết.
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 8 Bài 2 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Bài tập 4 trang 38 SGK Toán 8 Tập 1
Bài tập 5 trang 38 SGK Toán 8 Tập 1
Bài tập 6 trang 38 SGK Toán 8 Tập 1
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
Copyright © 2021 HOCTAP247