Muốn cộng hai phân thức có còng mẫu thức, ta cộng các tử thức với nhau và giữ nguyên mẫu thức.
Muốn cộng hai phân thức có mẫu thức khác nhau, ta quy đồng mẫu thức rồi cộng các phân thức có cùng mẫu thức vừa tìm được.
Bài 1: Cộng các phân thức cùng mẫu:
a.\(\frac{{x - 5}}{5} + \frac{{1 - x}}{5}\)
b.\(\frac{{{x^2} - x}}{{xy}} + \frac{{1 - 4x}}{{xy}}\)
c.\(\frac{{5xy - 3x}}{{2{x^2}{y^3}}} + \frac{{5x - 7xy}}{{2{x^2}{y^3}}}\)
Hướng dẫn
a.
\(\begin{array}{l} \frac{{x - 5}}{5} + \frac{{1 - x}}{5}\\ = \frac{{x - 5 + 1 - x}}{5}\\ = \frac{{ - 4}}{5} \end{array}\)
b.
\(\begin{array}{l} \frac{{{x^2} - x}}{{xy}} + \frac{{1 - 4x}}{{xy}}\\ = \frac{{{x^2} - x + 1 - 4x}}{{xy}}\\ = \frac{{{x^2} - 5x + 1}}{{xy}} \end{array}\)
c.
\(\begin{array}{l} \frac{{5xy - 3x}}{{2{x^2}{y^3}}} + \frac{{5x - 7xy}}{{2{x^2}{y^3}}}\\ = \frac{{5xy - 3x + 5x - 7xy}}{{2{x^2}{y^3}}}\\ = \frac{{2x - 2xy}}{{2{x^2}{y^3}}}\\ = \frac{{2x(1 - y)}}{{2{x^2}{y^3}}}\\ = \frac{{1 - y}}{{x{y^3}}} \end{array}\)
Bài 2: Thực hiện quy đồng mẫu số rồi cộng các phân thức sau:
a. \(\frac{{1 - 2x}}{{2x}} + \frac{{2x}}{{2x - 1}} + \frac{1}{{4{x^2} - 2x}}\)
b. \(\frac{{{x^2}}}{{{x^2} - 2x}} + \frac{6}{{6 - 3x}} + \frac{1}{{x + 2}}\)
Hướng dẫn
a.
\(\begin{array}{l} \frac{{1 - 2x}}{{2x}} + \frac{{2x}}{{2x - 1}} + \frac{1}{{4{x^2} - 2x}}\\ = \frac{{\left( {1 - 2x} \right)\left( {2x - 1} \right)}}{{2x\left( {2x - 1} \right)}} + \frac{{2x.2x}}{{2x\left( {2x - 1} \right)}} + \frac{1}{{2x\left( {2x - 1} \right)}}\\ = \frac{{\left( { - 4{x^2} + 4x - 1} \right) + 4{x^2} + 1}}{{2x\left( {2x - 1} \right)}}\\ = \frac{{4x}}{{2x\left( {2x - 1} \right)}}\\ = \frac{2}{{2x - 1}} \end{array}\)
b.
\(\begin{array}{l} \frac{{{x^2}}}{{{x^2} - 2x}} + \frac{6}{{6 - 3x}} + \frac{1}{{x + 2}}\\ = \frac{{3{x^2}\left( {x + 2} \right)}}{{3x\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{ - 6x\left( {x + 2} \right)}}{{3x\left( {x - 2} \right)\left( {x + 2} \right)}} + \frac{{3x\left( {x - 2} \right)}}{{3x\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{3{x^3} + 6{x^2} - 6{x^2} - 12x + 3{x^2} - 6x}}{{3x\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{3{x^3} + 3{x^2} - 18x}}{{3x\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{3x\left( {{x^2} + x - 6} \right)}}{{3x\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{{x^2} - 2x + 3x - 6}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{\left( {x - 2} \right)\left( {x + 3} \right)}}{{\left( {x - 2} \right)\left( {x + 2} \right)}}\\ = \frac{{x + 3}}{{x + 2}} \end{array}\)
Bài 3: Tính A:
\(A = \frac{{2x}}{{{x^2} + 2xy}} + \frac{y}{{xy - 2{y^2}}} + \frac{4}{{{x^2} - 4{y^2}}}\)
Hướng dẫn
Ta có:
\(\begin{array}{l} A = \frac{{2x}}{{{x^2} + 2xy}} + \frac{y}{{xy - 2{y^2}}} + \frac{4}{{{x^2} - 4{y^2}}}\\ = \frac{{2xy\left( {x - 2y} \right)}}{{xy\left( {x - 2y} \right)\left( {x + 2y} \right)}} + \frac{{xy\left( {x + 2y} \right)}}{{xy\left( {x - 2y} \right)\left( {x + 2y} \right)}} + \frac{{4y}}{{xy\left( {x - 2y} \right)\left( {x + 2y} \right)}}\\ = \frac{{2xy\left( {x - 2y} \right) + xy\left( {x + 2y} \right) + 4xy}}{{xy\left( {x - 2y} \right)\left( {x + 2y} \right)}}\\ = \frac{{\left( {2x - 4y + x + 2y + 4} \right)}}{{\left( {x - 2y} \right)\left( {x + 2y} \right)}}\\ = \frac{{3x - 2y + 4}}{{\left( {x - 2y} \right)\left( {x + 2y} \right)}}\\ = \frac{{3x - 2y + 4}}{{\left( {x - 2y} \right)\left( {x + 2y} \right)}} \end{array}\)
Qua bài giảng Cộng các phân thức đại số này, các em cần hoàn thành 1 số mục tiêu mà bài đưa ra như :
Các em có thể hệ thống lại nội dung kiến thức đã học được thông qua bài kiểm tra Trắc nghiệm Toán 8 Bài 5 cực hay có đáp án và lời giải chi tiết.
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Các em có thể xem thêm phần hướng dẫn Giải bài tập Toán 8 Bài 5 để giúp các em nắm vững bài học và các phương pháp giải bài tập.
Bài tập 21 trang 46 SGK Toán 8 Tập 1
Bài tập 22 trang 46 SGK Toán 8 Tập 1
Bài tập 23 trang 46 SGK Toán 8 Tập 1
Bài tập 24 trang 46 SGK Toán 8 Tập 1
Trong quá trình học tập nếu có thắc mắc hay cần trợ giúp gì thì các em hãy comment ở mục Hỏi đáp, Cộng đồng Toán HOC247 sẽ hỗ trợ cho các em một cách nhanh chóng!
Chúc các em học tập tốt và luôn đạt thành tích cao trong học tập!
Copyright © 2021 HOCTAP247