Cho hai vectơ \(\vec a\) và \(\vec b\) được mô tả như hình sau:
Số đo góc trên được gọi là số đo của góc giữa hai vectơ \(\vec a\) và \(\vec b\).
Nếu số đo ấy bằng 90 độ, ta nói \(\vec a\) vuông góc với \(\vec b\).
Tích vô hướng của hai vectơ \(\vec a\) và \(\vec b\) là một số (đại lượng đại số), được kí hiệu là \(\vec a.\vec b\) và được xác định bởi công thức
\(\vec a.\vec b=|\vec a|.|\vec b|.cos\left ( \vec a,\vec b \right )\)
Bình phương vô hướng:
Với mỗi vectơ \(\vec a\) tùy ý, tích vô hướng \(\vec a.\vec a\) được kí hiệu là \(|\vec a|^2\) được gọi là bình phương vô hướng
Ta có: \(\vec a^2=|\vec a|.|\vec a|.cos0^o=|\vec a|^2\)
Như vậy: Bình phương vô hướng của một vectơ bằng bình phương độ dài của vectơ đó
Với ba vectơ \(\vec a,\vec b,\vec c\) tùy ý và một số thực k, ta có:
\(\vec a.\vec b=\vec b.\vec a\) (tính chất giao hoán)
\(\vec a.\vec b=0\Leftrightarrow \vec a\perp \vec b\)
\((k\vec a).\vec b=\vec a.(k\vec b)=k.(\vec a.\vec b)\)
\(\vec a. (\vec b\pm \vec c)=\vec a.\vec b\pm \vec a.\vec c\) (tính chất phân phối tổng hiệu)
Ta dễ dàng chứng minh được \(MT^2=MA.MB\) thông qua việc chứng minh tam giác đồng dạng
Mặc khác theo định lý Pytago vào tam giác OMT vuông tại T (vì MT là tiếp tuyến)
Ta có: \(MT^2=OM^2-OT^2\)
Theo ý trên: \(MA.MB=\vec{MA}.\vec{MB}\) (vì M, A, B thẳng hàng)
Vậy: \(\vec{MA}.\vec{MB}=OM^2-OT^2\)
Đây chính là phương tích của điểm M đối với đường tròn (O).
Cho hai vectơ \(\vec{a}(x;y);\vec{b}(x';y')\). Khi đó:
Tính tích vô hướng của \(\vec{a}(2;3)\) và \(\vec{b}(1;1)\) biết chúng tạo với nhau một góc \(30^o\)
Áp dụng công thức tính tích vô hướng của hai vectơ, ta có: \(\vec{a}.\vec{b}=|\vec{a}|.|\vec{b}|.cos30\)
\(=\sqrt{2^2+3^2}.\sqrt{1^2+1^2}.\frac{\sqrt{3}}{2}=\frac{\sqrt{78}}{2}\)
Cho hình vuông ABCD cạnh a đường chéo BD. Tính các tích vô hướng sau: \(\vec{AD}.\vec{AB}\), \(\vec{AD}.\vec{BD}\) và \(\vec{AB}.\vec{CD}\)
Vì \(AD\perp AB\) nên \(\vec{AD}.\vec{AB}=0\)
\(\vec{AD}.\vec{BD}=|\vec{AD}|.|\vec{BD}|cosADB=a.a\sqrt{2}.cos45=a^2\)
\(\vec{AB}.\vec{CD}=|\vec{AB}|.|\vec{CD}|.cos0^o=a^2\)
Tính giá trị của biểu thức \(A=\frac{11tan\alpha-5cot\alpha}{34tan\alpha+2cot\alpha}\) biết \(sin\alpha=\frac{1}{4}\)
Ta có: \(A=\frac{11tan\alpha-5cot\alpha}{34tan\alpha+2cot\alpha}\)\(=\frac{11\frac{sin\alpha}{cos\alpha}-5\frac{cos\alpha}{sin\alpha}}{34\frac{sin\alpha}{cos\alpha}+2\frac{cos\alpha}{sin\alpha}}\)\(=\frac{11sin^2\alpha-5cos^2\alpha}{34sin^2\alpha+2cos^2\alpha}\)
\(=\frac{16sin^2\alpha-5}{36sin^2\alpha+2}\)
\(=\frac{16.(0,25)^2-5}{32.(0,25)^2+2}=-1\)
Chứng minh biểu thức sau không phụ thuộc vào x:
\(B=2(sin^6x+cos^6x)-3(sin^4x+cos^4x)\)
Ta có:
\(B=2(sin^6x+cos^6x)-3(sin^4x+cos^4x)\)
\(=2(sin^2x+cos^2x)(sin^4x-sin^2xcos^2x+cos^4x)-3(sin^4x+2sin^2xcos^2x+cos^4x-2sin^2xcos^2x)\)
\(=2(sin^4x+2sin^2xcos^2x+cos^4x-3sin^2xcos^2x)-3(1-2sin^2xcos^2x)\)
\(=2(1-3sin^2xcos^2x)-3(1-2sin^2xcos^2x)\)
\(=-1\)
Vậy biểu thức trên không phụ thuộc vào giá trị của góc x
Bài trước chúng ta đã nhắc đến giá trị lượng giác của một góc bất kì từ 0 đến 180 độ, hôm nay chúng ta sẽ được biết đến khái niệm Tích vô hướng của hai vectơ, liệu sẽ bằng 1 vectơ khác hay một giá trị đại số?
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 10 Chương 2 Bài 2 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 10 Chương 2 Bài 2 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 10 Cơ bản và Nâng cao.
Bài tập 2.28 trang 92 SBT Hình học 10
Bài tập 4 trang 51 SGK Hình học 10 NC
Bài tập 5 trang 51 SGK Hình học 10 NC
Bài tập 6 trang 51 SGK Hình học 10 NC
Bài tập 7 trang 52 SGK Hình học 10 NC
Bài tập 8 trang 52 SGK Hình học 10 NC
Bài tập 9 trang 52 SGK Hình học 10 NC
Bài tập 10 trang 52 SGK Hình học 10 NC
Bài tập 11 trang 52 SGK Hình học 10 NC
Bài tập 12 trang 52 SGK Hình học 10 NC
Bài tập 13 trang 52 SGK Hình học 10 NC
Bài tập 14 trang 52 SGK Hình học 10 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247