1.1. Định lí côsin trong tam giác
1.2. Định lí sin trong tam giác
1.3. Tổng bình phương hai cạnh và độ dài đường trung tuyến của tam giác
1.5. Giải tam giác và ứng dụng thực tế
3. Luyện tập bài 3 chương 2 hình học 10
3.1 Trắc nghiệm về Các hệ thức lượng trong tam giác và giải tam giác
3.2 Bài tập SGK và Nâng Cao về Các hệ thức lượng trong tam giác và giải tam giác
Xét tam giác ABC vuông tại A, ta có:
Ta đã biết rằng: \(BC^2=AB^2+AC^2\)
hay \(\vec {BC}^2=\vec {AB}^2+\vec {AC}^2\)
Chứng minh ngắn gọn theo tích vô hướng của hai vectơ ở bài học trước ta có được điều trên.
Trong tam giác ABC, gọi \(Ab=c;AC=b;BC=a\), ta có:
\(a^2=b^2+c^2-2bc.cosA\)
\(b^2=a^2+c^2-2ac.cosB\)
\(c^2=a^2+b^2-2ab.cosC\)
\(cosA=\frac{b^2+c^2-a^2}{2bc}\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}\)
\(cosC=\frac{a^2+b^2-c^2}{2ab}\)
Cho hình vẽ:
Ta dễ dàng nhận thấy rằng:
\(a=2RsinA, b=2RsinB, c=2RsinC\)
Chứng minh tương tự với tam giác thường, hệ thức trên vẫn đúng!
Với mọi tam giác ABC, ta có:
\(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R\)
Cho tam giác ABC có đường trung tuyến AM.
Gọi \(m_a;m_b;m_c\) lần lượt là các đường trung tuyến ứng với các cạnh a, b, c. Khi đó:
\(m_{a}^{2}=\frac{b^2+c^2}{2}-\frac{a^2}{4}\)
\(m_{b}^{2}=\frac{a^2+c^2}{2}-\frac{b^2}{4}\)
\(m_{c}^{2}=\frac{a^2+b^2}{2}-\frac{c^2}{4}\)
Ngoài kiến thức tính diện tích đã học ở cấp dưới là bằng nửa tích cạnh đáy nhân với chiều cao tương ứng, ta còn được biết thêm với các công thức sau:
Với tam giác ABC, kí hiệu \(h_a;h_b;h_c\) lần lượt là các đường cao ứng với các cạnh a, b, c. R, r là bán kính đường tròn ngoại tiếp và nội tiếp tam giác ABC, \(p=\frac{1}{2}(a+b+c)\) là nửa chu vi của tam giác, ta có các công thức tính diện tích S của tam giác ABC như sau:
\(S=\frac{1}{2}a.h_a=\frac{1}{2}b.h_b=\frac{1}{2}c.h_c\)
\(S=\frac{1}{2}ab.sinC=\frac{1}{2}ac.sinB=\frac{1}{2}bc.sinA\)
\(S=\frac{abc}{4R}\)
\(S=pr\)
\(S=\sqrt{p(p-a)(p-b)(p-c)}\)
Giải tam giác là tính độ dài các cạnh và số đo các góc của tam giác dựa trên điều kiện cho trước.
Ví dụ: Cho hình vẽ sau:
Hãy giải tam giác ABC.
Ta có:
\(a^2=b^2+c^2-2bc.cosA\)
\(\Leftrightarrow 6^2=5^2+3,61^2-2.5.3,61.cosA\)
\(\Leftrightarrow 36=25+13,03-36,1.cosA\)
\(\Rightarrow cosA=0,056\) \(\Rightarrow \widehat{A}\approx 86,77^o\)
Tương tự:
\(b^2=a^2+c^2-2ac.cosB\)
\(\Leftrightarrow 3,61^2=6^2+5^2-2.6.5.cosB\)
\(\Rightarrow cosB=0,779\) \(\Rightarrow \widehat{B}\approx 36,92^o\)
\(\Rightarrow \widehat{C}=180^o-\widehat{A}-\widehat{B}\approx 56,3^o\)
Bài 1: Cho tam giác ABC có \(\widehat{A}=60^o, \widehat{B}=80^o,a=6\). Tính hai cạnh a và c.
Hướng dẫn:
Dễ dàng tìm được \(\widehat{C}=180^o-60^o-80^o=40^o\)
Ta sẽ tính bán kính đường tròn ngoại tiếp tam giác ABC là R:
\(\frac{a}{sinA}=2R=\frac{6}{sin60^o}=4\sqrt{3}\)
Vậy: \(\frac{b}{sinB}=4\sqrt{3}\Rightarrow b=sinB.4\sqrt{3}=6,823\)
\(\frac{c}{sinC}=4\sqrt{3}\Rightarrow c=sinC.4\sqrt{3}=4,45\)
Bài 2: Tam giác ABC có \(a=10,b=11,c=14\). Gọi M là trung điểm của cạnh BC. Tính độ dài AM.
Hướng dẫn:
Ta có: \(AM^2=\frac{AB^2+AC^2}{2}-\frac{BC^2}{4}=\frac{11^2+14^2}{2}-\frac{10^2}{4}=11,55\)
Bài 1: Cho tam giác ABC có 3 cạnh a, b, c lần lượt là 5, 7 ,10. Cạnh của hình vuông có diện tích bằng diện tích tam giác ABC là bao nhiêu?
Hướng dẫn:
Áp dụng công thức Hê rông tính diện tích, ta có:
\(p=\frac{a+b+c}{2}=11\)
\(S=\sqrt{11(11-5)(11-10)(11-7)}=16,24(dvdt)\)
Vậy cạnh của hình vuông có cùng diện tích trên là:
\(a=\sqrt{S}=4,03\)
Bài 2: Cho hình vẽ sau, biết \(AD=5, BD=15\) và các góc cho trước. Tính độ dài BC.
Hướng dẫn:
Xét tam giác ADB vuông tại D, ta có: \(AB=\sqrt{AD^2+BD^2}=5\sqrt{10}\)
Ta có: \(tanABD=\frac{AD}{BD}=\frac{1}{3}\Rightarrow \widehat{ABD}=18,43^o\)
\(\Rightarrow \widehat{ABC}=90^o-\widehat{ABD}=71,57^o\)
\(\Rightarrow \widehat{ACB}=180^o-\widehat{ABC}-\widehat{BAC}=63,43^o\)
Gọi R là bán kính đường tròn ngoại tiếp tam giác ABC, ta có:
\(R=\frac{AB}{2sinACB}=8,84\)
Mặc khác, \(R=\frac{BC}{2sinBAC}=8,84\Rightarrow BC=2R.sinBAC=12,5\)
Ở lớp 9, chúng ta đã biết về các hệ thức lượng trong tam giác vuông, bài học này cho chúng ta kiến thức về Các hệ thức lượng trong tam giác thường, liệu chúng có khác gì kiến thức lớp dưới, và thế nào là giải tam giác?
Để cũng cố bài học xin mời các em cũng làm Bài kiểm tra Trắc nghiệm Hình học 10 Bài 3 để kiểm tra xem mình đã nắm được nội dung bài học hay chưa.
Cho tam giác ABC có các cạnh a, b, c lần lượt là 10, 15, 18. Độ dài đường trung tuyến \(b_m\) bằng:
Câu 2- Câu 5: Xem thêm phần trắc nghiệm để làm thử Online
Bên cạnh đó các em có thể xem phần hướng dẫn Giải bài tập Hình học 10 Bài 3 sẽ giúp các em nắm được các phương pháp giải bài tập từ SGK hình học 10 Cơ bản và Nâng cao.
Bài tập 27 trang 66 SGK Hình học 10 NC
Bài tập 28 trang 66 SGK Hình học 10 NC
Bài tập 29 trang 66 SGK Hình học 10 NC
Bài tập 30 trang 66 SGK Hình học 10 NC
Bài tập 31 trang 66 SGK Hình học 10 NC
Bài tập 32 trang 66 SGK Hình học 10 NC
Bài tập 33 trang 66 SGK Hình học 10 NC
Bài tập 34 trang 66 SGK Hình học 10 NC
Bài tập 35 trang 66 SGK Hình học 10 NC
Bài tập 36 trang 66 SGK Hình học 10 NC
Bài tập 37 trang 66 SGK Hình học 10 NC
Bài tập 38 trang 66 SGK Hình học 10 NC
Nếu có thắc mắc cần giải đáp các em có thể để lại câu hỏi trong phần Hỏi đáp, cộng đồng Toán HOCTAP247 sẽ sớm trả lời cho các em.
Copyright © 2021 HOCTAP247