* Đáp án
* Hướng dẫn giải
Vì tia tím truyền đối xứng qua lăng kính nên ta có: góc lệch D cực tiểu
$\left\{ \matrix{{i}_{1{t}}{=}{i}_{2{t}}{=}{i}\hfill \cr{r}_{1{t}}{=}{r}_{2{t}}{=}\dfrac{A}2{=}30{°}\hfill \cr} \right.$
${D}_{m}{=}2{i}{-}{A}{→}{i}{=}\dfrac{{D}_{m}{+}60}2$
Mặt khác, ta có:
${sin}{i}{=}{n}_{t}{{sinr}}_{1{t}}{↔}{sin}\left(\dfrac{{D}_{m}{+}60}2\right){=}{\sqrt{3}}{sin}30^0$
${→}{sin}\left(\dfrac{{D}_{m}{+}60}2\right){=}\dfrac{\sqrt{3}}2{→}\dfrac{{D}_{m}{+}60}2{=}60{→}{D}_{m}{=}60^0{,}{i}{=}60^0$
+ Tia ló đỏ truyền đối xứng qua lăng kính thì:
$\left\{ \matrix{{i}_{1{d}}{=}{i}_{2{d}}{=}{i}{'}\hfill \cr{r}_{1{d}}{=}{r}_{2{d}}{=}\dfrac{A}2{=}30{°}\hfill \cr} \right.$
${→}{D}_{m}{=}2{i}{'}{-}{A}{→}{i}{'}{=}\dfrac{{D}_{m}{+}60}2$
Mặt khác, ta có:
${sin}{i}{=}{n}_{d}{{sinr}}_{1{d}}{↔}{sin}\left(\dfrac{{D}_{m}{+}60}2\right){=}{\sqrt{2}}{sin}30^0$
${→}{sin}\left(\dfrac{{D}_{m}{+}60}2\right){=}\dfrac{\sqrt{2}}2{→}\dfrac{{D}_{m}{+}60}2{=}45{→}{D}_{m}{=}30^0{,}{i}{=}45^0$
Vậy ta cần phải quay góc:${α}{=}{i}{-}{i}^{'}{=}60{-}45{=}15^0$