A. x = -8
B. \(x = \dfrac{5}{2}\)
C. x = 8
D. A, B đều đúng
D
Điều kiện xác định: \(x \ne \dfrac{2}{7}\)
Nhận thấy hai vế có nhân tử chung nên ta biến đổi như sau:
\(\left( {2x + 3} \right)\left( {\dfrac{{3x + 8}}{{2 - 7x}} + 1} \right) \)\(\,= \left( {x - 5} \right)\left( {\dfrac{{3x + 8}}{{2 - 7x}} + 1} \right)\)
\(\Leftrightarrow \left( {2x + 3} \right)\left( {\dfrac{{3x + 8}}{{2 - 7x}} + 1} \right) \)\(\,- \left( {x - 5} \right)\left( {\dfrac{{3x + 8}}{{2 - 7x}} + 1} \right)=0\)
\(\Leftrightarrow \left( {\dfrac{{3x + 8}}{{2 - 7x}} + 1} \right)\left( {2x + 3 - x + 5} \right) \)\(\,= 0 \)
\( \Leftrightarrow \left( {\dfrac{{3x + 8 + 2 - 7x}}{{2 - 7x}}} \right)\left( {x + 8} \right) = 0\)
\( \Leftrightarrow \left( {\dfrac{{10 - 4x}}{{2 - 7x}}} \right)\left( {x + 8} \right) = 0\)
\(\Rightarrow \left( {10 - 4x} \right)\left( {x + 8} \right) = 0\)
\( \Leftrightarrow \left[ \matrix{{10 - 4x = 0} \cr {x + 8 = 0} \cr}\right.\)
\(\Leftrightarrow \left[\matrix{{x = \dfrac{5}{2}}\text{( thỏa mãn)} \cr {x = - 8}\text{ (thỏa mãn)} \cr} \right. \)
Vậy phương trình có hai nghiệm: \(x = \dfrac{5}{2};\; x = - 8\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247