Cho phương trình + - 2}} = 0(1)\\ \frac{{x - - x}} + \frac{{2x - - 3x + 2}} = 0(2) Khẳng định nào sau đây là sai.

Câu hỏi :

Cho phương trình  \(\begin{array}{l} \frac{1}{2} + \frac{2}{{x - 2}} = 0(1)\\ \frac{{x - 1}}{{{x^2} - x}} + \frac{{2x - 2}}{{{x^2} - 3x + 2}} = 0(2) \end{array}\). Khẳng định nào sau đây là sai.

A. Hai phương trình có cùng điều kiện xác định.

B. Hai phương trình có cùng số nghiệm

C. Hai phương trình có cùng tập nghiệm

D. Hai phương trình tương đương

* Đáp án

A

* Hướng dẫn giải

*Xét phương trình (1):

\(\begin{array}{l} \frac{1}{x} + \frac{2}{{x - 2}} = 0(x \ne 0;x \ne 2)\\ \to \begin{array}{*{20}{l}} {\frac{1}{x} + \frac{2}{{x - 2}} = 0 \Leftrightarrow \frac{{1\left( {x - 2} \right) + 2x}}{{x\left( {x - 2} \right)}} = 0}\\ { \Rightarrow 1\left( {x - 2} \right) + 2x = 0 \Leftrightarrow x - 2 + 2x = 0}\\ { \Leftrightarrow 3x = 2 \Leftrightarrow x = \frac{2}{3}{\mkern 1mu} \left( {TM} \right)} \end{array} \end{array}\)

Vậy phương trình (1) có nghiệm duy nhất x=2/3

* Xét phương trình (2):

\(\begin{array}{l} \frac{{x - 1}}{{{x^2} - x}} + \frac{{2x - 2}}{{{x^2} - 3x + 2}} = 0\\ \to \left\{ \begin{array}{l} {x^2} - x \ne 0\\ {x^2} - 3x + 2 \ne 0 \end{array} \right. \to \left\{ \begin{array}{l} \left[ \begin{array}{l} x \ne 0\\ x \ne 1 \end{array} \right.\\ \left[ \begin{array}{l} x \ne 2\\ x \ne 1 \end{array} \right. \end{array} \right. \to \left[ \begin{array}{l} x \ne 2\\ x \ne 1\\ x \ne 0 \end{array} \right. \end{array}\)

Khi đó 

\(\begin{array}{l} \frac{{x - 1}}{{{x^2} - x}} + \frac{{2x - 2}}{{{x^2} - 3x + 2}} = 0 \Leftrightarrow \frac{{x - 1}}{{x\left( {x - 1} \right)}} + \frac{{2\left( {x - 1} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)}} = 0\\ \Rightarrow \frac{1}{x} + \frac{2}{{x - 2}} = 0\begin{array}{*{20}{l}} { \Leftrightarrow \frac{{1\left( {x - 2} \right) + 2x}}{{x\left( {x - 2} \right)}} = 0}\\ { \Rightarrow 1\left( {x - 2} \right) + 2x = 0 \Leftrightarrow x - 2 + 2x = 0}\\ { \Leftrightarrow 3x = 2 \Leftrightarrow x = \frac{2}{3}{\mkern 1mu} \left( {TM} \right)} \end{array} \end{array}\)

Vậy tập nghiệm của phương trình (2) là S={2/3}

Dễ thấy hai phương trình đã cho có cùng tập nghiệm, cùng số nghiệm và tương đương nhưng không có cùng điều kiện xác định.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi giữa HK2 môn Toán 8 năm 2021

Số câu hỏi: 518

Copyright © 2021 HOCTAP247