Hình bình hành ABCD có tâm đối xứng là O, E là điểm bất kỳ trên đoạn OD. Gọi F là điểm đối xứng của C qua E. Xác định vị trí điểm E trên OD để hình thang ODFA là hình bình hành.

Câu hỏi :

Cho hình bình hành ABCD có tâm đối xứng là O, E là điểm bất kỳ trên đoạn OD. Gọi F là điểm đối xứng của C qua E. Xác định vị trí điểm E trên OD để hình thang ODFA là hình bình hành.

A. E là chân đường vuông góc kẻ từ C đến OD   

B. Cả A, B đều sai

C. E là trung điểm của OD

D. Cả A, B đều đúng

* Đáp án

C

* Hướng dẫn giải

Để hình thang ODFA là hình bình hành thì ta cần OD = AF mà OE = \(\frac{1}{2}\)AF (cmt) nên OE = \(\frac{1}{2}\)OD

Hay E là trung điểm của OD

Đáp án cần chọn là: C

Copyright © 2021 HOCTAP247