Rút gọn biểu thức: \(A = \dfrac{1}{{x + 1}} + \dfrac{1}{{{x^2} + x}}\) với \(x \ne 0,x \ne - 1\).

Câu hỏi :

Rút gọn biểu thức: \(A = \dfrac{1}{{x + 1}} + \dfrac{1}{{{x^2} + x}}\) với \(x \ne 0,x \ne  - 1\).

A. \(A = \dfrac{1}{x}\)

B. \(A = -\dfrac{1}{x}\)

C. \(A = \dfrac{1}{2x}\)

D. \(A = -\dfrac{1}{2x}\)

* Đáp án

A

* Hướng dẫn giải

Ta có:

\(A = \dfrac{1}{{x + 1}} + \dfrac{1}{{{x^2} + x}}\) với \(x \ne 0,x \ne  - 1\).

\(\begin{array}{l}A = \dfrac{1}{{x + 1}} + \dfrac{1}{{x\left( {x + 1} \right)}}\\A = \dfrac{x}{{x\left( {x + 1} \right)}} + \dfrac{1}{{x\left( {x + 1} \right)}}\\A = \dfrac{{x + 1}}{{x\left( {x + 1} \right)}} = \dfrac{1}{x}\end{array}\)

Vậy \(A = \dfrac{1}{x}\).

Copyright © 2021 HOCTAP247