Đa thức \(P\) trong đẳng thức \(\frac{{x - 2}}{{{x^2} + 4}} = \frac{{2{x^2} - 4x}}{P}\) là

Câu hỏi :

Đa thức \(P\) trong đẳng thức \(\frac{{x - 2}}{{{x^2} + 4}} = \frac{{2{x^2} - 4x}}{P}\) là

A. \(2{x^2} - 8x\)    

B. \(2{x^2} + 8x\) 

C. \(2{x^3} - 8x\)    

D. \(2{x^3} + 8x\) 

* Đáp án

D

* Hướng dẫn giải

\(\begin{array}{l}\,\,\,\,\,\,\frac{{x - 2}}{{{x^2} + 4}} = \frac{{2{x^2} - 4x}}{P}\\ \Leftrightarrow \frac{{x - 2}}{{{x^2} + 4}} = \frac{{2x\left( {x - 2} \right)}}{P}\\ \Rightarrow P.\left( {x - 2} \right) = 2x\left( {x - 2} \right)\left( {{x^2} + 4} \right)\\ \Leftrightarrow P = 2x\left( {{x^2} + 4} \right)\\ \Leftrightarrow P = 2{x^3} + 8x\end{array}\)

Vậy đa thức \(P\) trong đẳng thức \(\frac{{x - 2}}{{{x^2} + 4}} = \frac{{2{x^2} - 4x}}{P}\) là \(2{x^3} + 8x\).

Chọn D.

Copyright © 2021 HOCTAP247