Rút gọn phân thức \(\frac{{{x^5} + {x^4} + 1}}{{{x^2} + x + 1}}\) ta được kết quả là:

Câu hỏi :

Rút gọn phân thức \(\frac{{{x^5} + {x^4} + 1}}{{{x^2} + x + 1}}\) ta được kết quả là:

A. \({x^3} - {x^2} + 1\)    

B. \({x^3} - {x^2} - 1\)  

C. \({x^3} + {x^2} - 1\)      

D. \({x^3} - x + 1\)  

* Đáp án

D

* Hướng dẫn giải

\(\begin{array}{l}\,\,\,\,\,\,\frac{{{x^5} + {x^4} + 1}}{{{x^2} + x + 1}}\\ = \frac{{{x^5} - {x^3} + {x^2} + {x^4} - {x^2} + x + {x^3} - x + 1}}{{{x^2} + x + 1}}\\ = \frac{{{x^5} - {x^3} + {x^2} + {x^4} - {x^2} + x + {x^3} - x + 1}}{{{x^2} + x + 1}}\\ = \frac{{\left( {{x^5} - {x^3} + {x^2}} \right) + \left( {{x^4} - {x^2} + x} \right) + \left( {{x^3} - x + 1} \right)}}{{{x^2} + x + 1}}\\\, = \frac{{{x^2}\left( {{x^3} - x + 1} \right) + x\left( {{x^3} - x + 1} \right) + \left( {{x^3} - x + 1} \right)}}{{{x^2} + x + 1}}\\\, = \frac{{\left( {{x^2} + x + 1} \right)\left( {{x^3} - x + 1} \right)}}{{{x^2} + x + 1}}\\\, = {x^3} - x + 1\end{array}\)

Vậy \(\frac{{{x^5} + {x^4} + 1}}{{{x^2} + x + 1}} = {x^3} - x + 1\).

Chọn D.

Copyright © 2021 HOCTAP247