Tìm cặp số nguyên \(\left( {x;\;y} \right)\) thỏa mãn phương trình: \({x^3} + 3x = {x^2}y + 2y + 5.\)

Câu hỏi :

Tìm cặp số nguyên \(\left( {x;\;y} \right)\)  thỏa mãn phương trình:  \({x^3} + 3x = {x^2}y + 2y + 5.\) 

A. \(\left( {x;\;y} \right) \in \left\{ {\left( {1;\,3} \right);\;\left( {5;\;5} \right)} \right\}\) 

B. \(\left( {x;\;y} \right) \in \left\{ {\left( { - 1; - 3} \right);\;\left( { - 5; - 5} \right)} \right\}\) 

C. \(\left( {x;\;y} \right) \in \left\{ {\left( { - 1; - 3} \right);\;\left( {5;\;5} \right)} \right\}\) 

D. \(\left( {x;\;y} \right) \in \left\{ {\left( {1;\,3} \right);\;\left( { - 5; - 5} \right)} \right\}\) 

* Đáp án

C

* Hướng dẫn giải

Ta có:

\(\begin{array}{l}\;\;\;\;{x^3} + 3x = {x^2}y + 2y + 5\\ \Leftrightarrow {x^3} + 3x - 5 = {x^2}y + 2y\\ \Leftrightarrow {x^3} + 3x - 5 = y\left( {{x^2} + 2} \right)\\ \Leftrightarrow y = \frac{{{x^3} + 3x - 5}}{{{x^2} + 2}}\;\;\;\;\;\left( {do\;\;{x^2} + 2 > 0} \right)\\ \Leftrightarrow y = \frac{{{x^3} + 2x + x - 5}}{{{x^2} + 2}}\\ \Leftrightarrow y = x + \frac{{x - 5}}{{{x^2} + 2}}\;\;\;\;\left( * \right)\;.\end{array}\)

Để \(y \in \mathbb{Z} \Rightarrow \left( {x + \frac{{x - 5}}{{{x^2} + 2}}} \right) \in \mathbb{Z}\)

Mà \(x \in \mathbb{Z} \Rightarrow y \in \mathbb{Z} \Leftrightarrow \frac{{x - 5}}{{{x^2} + 2}} \in \mathbb{Z} \Leftrightarrow \left( {x - 5} \right)\; \vdots \;\left( {{x^2} + 2} \right)\) 

\(\begin{array}{l} \Rightarrow \left[ {\left( {x - 5} \right)\left( {x + 5} \right)} \right]\; \vdots \;\left( {{x^2} + 2} \right)\\ \Leftrightarrow \left( {{x^2} - 25} \right)\; \vdots \;\left( {{x^2} + 2} \right)\\ \Leftrightarrow \left( {{x^2} + 2 - 27} \right)\; \vdots \;\left( {{x^2} + 2} \right)\\ \Leftrightarrow 27\; \vdots \;\left( {{x^2} + 2} \right)\end{array}\).

Hay \(\left( {{x^2} + 2} \right) \in U\left( {27} \right)\)

Mà \({x^2} + 2 \ge 2\;\;\forall x \in \mathbb{Z} \Rightarrow \left( {{x^2} + 2} \right) \in \left\{ {3;\;9;\;27} \right\}\)

\( \Leftrightarrow \left[ \begin{array}{l}{x^2} + 2 = 3\\{x^2} + 2 = 9\\{x^2} + 2 = 27\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}{x^2} = 1\;\;\left( {tm} \right)\\{x^2} = 7\;\;\left( {ktm} \right)\\{x^2} = 25\;\;\left( {tm} \right)\end{array} \right. \Rightarrow \left[ \begin{array}{l}{x^2} = 1\\{x^2} = 25\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\;\\x =  - 1\;\\x = 5\\x =  - 5\end{array} \right.\)

+) Với \(x = 1 \Rightarrow \left( * \right) \Leftrightarrow y = 1 + \frac{{1 - 5}}{{1 + 2}} =  - \frac{1}{3}\;\;\left( {ktm} \right)\)

+) Với \(x =  - 1 \Rightarrow \left( * \right) \Leftrightarrow y =  - 1 + \frac{{ - 1 - 5}}{{{{\left( { - 1} \right)}^2} + 2}} =  - 3\;\;\left( {tm} \right)\) 

+) Với  \(x = 5 \Rightarrow y = x + \frac{{x - 5}}{{{x^2} + 2}} = 5 + \frac{0}{{27}} = 5\;\;\left( {tm} \right)\)

+) Với  \(x =  - 5 \Rightarrow y = x + \frac{{x - 5}}{{{x^2} + 2}} =  - 5 + \frac{{ - 5 - 5}}{{27}} =  - \frac{{145}}{{27}}\;\;\left( {ktm} \right)\)

Vậy cặp số nguyên \(\left( {x;\;y} \right) \in \left\{ {\left( { - 1; - 3} \right);\;\left( {5;\;5} \right)} \right\}\)  thỏa mãn phương trình.

Chọn C.

Copyright © 2021 HOCTAP247