Tìm giá trị nhỏ nhất của biểu thức: \(M = 2{x^2} + 5{y^2} - 2xy + 2y + 2x\)

Câu hỏi :

Tìm giá trị nhỏ nhất của biểu thức: \(M = 2{x^2} + 5{y^2} - 2xy + 2y + 2x\) 

A. \(0\) 

B. \(1\) 

C. \( - 1\) 

D. \(2\)   

* Đáp án

C

* Hướng dẫn giải

\(\begin{array}{l}\;\;\;\;\;M = 2{x^2} + 5{y^2}-2xy + 2y + 2x\\ \Leftrightarrow M = 2{{\rm{x}}^2} - 2{\rm{x}}(y - 1) + 5{y^2} + 2y\\ \Leftrightarrow M = 2\left[ {{x^2} - x(y - 1)} \right] + 5{y^2} + 2y\\ \Leftrightarrow M = 2\left[ {{x^2} - 2.x.\frac{1}{2}\left( {y - 1} \right) + \frac{{{{\left( {y - 1} \right)}^2}}}{4}} \right] - \frac{{{{\left( {y - 1} \right)}^2}}}{2} + 5{y^2} + 2y\\ \Leftrightarrow M = 2{\left( {x - \frac{{y - 1}}{2}} \right)^2} + \frac{9}{2}{y^2} + 3y - \frac{1}{2}\\ \Leftrightarrow M = 2{\left( {x - \frac{{y - 1}}{2}} \right)^2} + \frac{1}{2}\left( {9{y^2} + 6y + 1} \right) - 1\\ \Leftrightarrow M = 2{\left( {x - \frac{{y - 1}}{2}} \right)^2} + \frac{1}{2}{\left( {3y + 1} \right)^2} - 1 \ge  - 1\end{array}\)

Ta có: \(\left\{ \begin{array}{l}{\left( {x - \frac{{y - 1}}{2}} \right)^2} \ge 0\;\forall x,\;y\\{\left( {3y + 1} \right)^2} \ge 0\;\forall x,\;y\end{array} \right. \Rightarrow M \ge  - 1\;\forall x,\;y\)

Dấu “=” xảy ra \( \Leftrightarrow \left\{ \begin{array}{l}x - \frac{{y - 1}}{2} = 0\\3y + 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{y - 1}}{2}\\y =  - \frac{1}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{2}{3}\\y =  - \frac{1}{3}\end{array} \right..\)

Vậy \(Min\;\;M =  - 1\;\;khi\;\;\;x =  - \frac{2}{3};\;y =  - \frac{1}{3}.\)

Chọn C.

Copyright © 2021 HOCTAP247