A. \(S = \left\{ 0 \right\}\)
B. \(S = \left\{ 0 \right\}\)
C. \(S = \left\{ 1 \right\}\)
D. \(S = \left\{ 0 \right\}\)
A
ĐKXĐ: \(x \ne - 1\)
\(\begin{array}{l}\,\,\,\,\,\,\,\,\frac{{ - 7{x^2} + 4}}{{{x^3} + 1}} = \frac{5}{{{x^2} - x + 1}} - \frac{1}{{x + 1}}\\\Leftrightarrow \frac{{ - 7{x^2} + 4}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{5\left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} - \frac{{{x^2} - x + 1}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\\ \Leftrightarrow \frac{{ - 7{x^2} + 4}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = \frac{{5\left( {x + 1} \right) - \left( {{x^2} - x + 1} \right)}}{{\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}}\\ \Rightarrow - 7{x^2} + 4 = 5\left( {x + 1} \right) - \left( {{x^2} - x + 1} \right)\\ \Leftrightarrow - 7{x^2} + 4 = 5x + 5 - {x^2} + x - 1\\ \Leftrightarrow 6{x^2} + 6x = 0\\ \Leftrightarrow 6x\left( {x + 1} \right) = 0\\\Leftrightarrow \left[ \begin{array}{l}x = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0(tm)\\x = - 1(ktm)\end{array} \right.\end{array}\)
Chọn A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247