Hướng dẫn giải
Ta có: x2+ 2xy + y2 = (x + y)2= 12= 1 (1)
A = x3+ y3+ 2xy
= (x + y)(x2– xy + y2) + 2xy
= x2– xy + y2+ 2xy
= x2+ xy + y2
Suy ra : 2A = 2x2+ 2xy + 2y2= (x + y)2+ x2+ y2= 1 + x2+ y2
Lại có: (x – y)2≥ 0
⇒ x2– 2xy + y2≥ 0 (2)
Từ (1) và (2)
⇒ (x2+ 2xy + y2) + (x2– 2xy + y2) ≥ 1
⇒ 2(x2+ y2) ≥ 1
\[ \Rightarrow {x^2} + {y^2} \ge \frac{1}{2}\]
\[ \Rightarrow {x^2} + {y^2} + 1 \ge \frac{3}{2}\]
\[ \Rightarrow 2A \ge \frac{3}{2}\]
\[ \Rightarrow A \ge \frac{3}{4}\]
Dấu “=” xảy ra \[ \Leftrightarrow x = y = \frac{1}{2}\]
Vậy với \[x = y = \frac{1}{2}\] thì giá trị nhỏ nhất của \[A \ge \frac{3}{4}\].
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247