Cho tam giác ABC có M, D lần lượt là trung điểm của BC, AC, P là hình chiếu vuông góc của B lên trung trực của AC. Gọi E là giao điểm của MP với AB, F là giao điểm của EM với AC1 C...

Câu hỏi :

1 Chứng minh: BFCP là hình bình hình.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

1) Ta có:

BP ⊥ d (gt)

CF ⊥ d (do d là đường trung trực AC)

⇒ BP // CF

Xét ΔBMP và ΔCMF có:

\(\widehat {BMP} = \widehat {FMC}\) (đối đỉnh)

BM = MC (gt)

\(\widehat {PBM} = \widehat {MCF}\) (so le trong)

⇒ ΔBMP = ΔCMF (g.c.g)

⇒ PM = MF

Xét tứ giác BPCF có:

PM = MF (cmt)

BM = MC (do M là trung điểm BC)

⇒ Tứ giác BPCF là hình bình hành (2 đường chéo cắt nhau tại trung điểm của mỗi đường)

2) Xét ΔPMQ và ΔFMD có:

\(\widehat {PMQ} = \widehat {FMD}\)(cmt)

PM = MF (cmt)

\(\widehat {MPQ} = \widehat {MFD}\) (do BP // CF, so le trong)

⇒ ΔPMQ = ΔFMD (g.c.g)

⇒ QM = MD

⇒ M là trung điểm QD

Xét tứ giác DPQF có

M là trung điểm của QD (cmt)

M là trung điểm của PF (cmt)

⇒Tứ giác DPQF là hình bình hành

Lại có: PD ⊥ DF (do d là đường trung trực của AC mà PD thuộc d và DF thuộc AC)

Hình bình hành DPQF có một góc vuông

⇒ DPQF là hình chữ nhật

3) Ta có: DPQF là hình chữ nhật

⇒ PF = QD (2 đường chéo của hình chữ nhật) và PM = QM (=1/2 PF = 1/2 QD)

Xét ΔPMQ có PM = QM ⇒ ΔPMQ cân tại M

\( \Rightarrow \widehat {MPQ} = \widehat {MQP}\) (1)

Tứ giác BPCF là hình bình hành ⇒ BP = CF

Tứ giác DPQF là hình chữ nhật ⇒ PQ = DF

Suy ra BP + PQ = CF + DF ⇒ BQ = DC

Mà DC = AD (vì D là trung điểm của AC)

Xét tứ giác ADQB có AD = BQ và AD//BQ

⇒ ADQB là hình bình hành

⇒ AB // QD

\( \Rightarrow \widehat {EBP} = \widehat {MQP}\) (so le trong (2)

Ta có : \(\widehat {BPE} = \widehat {MPQ}\) (đối đỉnh) (3)

Từ (1), (2), (3) \( \Rightarrow \widehat {BPE} = \widehat {EBP}\)

Xét ΔEBP có: \(\widehat {BPE} = \widehat {EBP}\) (cmt)

⇒ ΔEBP cân tại E

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi Giữa kì 1 Toán 8 có đáp án !!

Số câu hỏi: 63

Copyright © 2021 HOCTAP247