(0,5 điểm): Tìm giá trị nhỏ nhất của biểu thức A, biết:A = x2+ 5y2– 4xy – 2y + 2x + 2010.

Câu hỏi :

(0,5 điểm):

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

A = x2+ 5y2– 4xy – 2y + 2x + 2010

= x2+ 4y2+ y2– 4xy – 4y + 2y + 2x + 1 + 1 + 2008

= (x2– 4xy + 4y2) + (2x – 4y) + (y2+ 2y + 1) + 1 + 2008

= (x – 2y)2+ 2(x – 2y) + 1 + (y + 1)2+ 2008

= (x – 2y + 1)2+ (y + 1)2+ 2008

Vì \[{\left( {x--2y + 1} \right)^2} + {\left( {y + 1} \right)^2}\; \ge 0{\rm{ }}\forall x;y\]

Do đó (x – 2y + 1)2+ (y + 1)2+ 2008 ≥ 2008 với mọi x, y

Dấu “=” xảy ra khi x – 2y + 1 = 0 và y + 1 = 0

Ta có:

y + 1 = 0 ⇒ y = – 1

Thay y = – 1 vào x – 2y + 1 = 0

⇒ x – 2.(– 1) + 1 = 0

⇒ x = – 3

Vậy GTNN của A là 2008 khi x = – 3 và y = – 1.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi Giữa kì 1 Toán 8 có đáp án !!

Số câu hỏi: 63

Copyright © 2021 HOCTAP247