Cho x2y – y2x + x2z – z2x + y2z + z2y = 2xyz.Chứng minh rằng trong 3 số x, y, z có ít nhất hai số bằng nhau hoặc đối nhau.

Câu hỏi :

Chứng minh rằng trong 3 số x, y, z có ít nhất hai số bằng nhau hoặc đối nhau.

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

x2y – y2x + x2z – z2x + y2z + z2y = 2xyz

⇔ x2y + x2z – y2x – xyz – xyz – z2x + y2z + z2y = 0

⇔ x(xy + xz – y2 – yz) – z(xy + zx – y2 – zy) = 0

⇔ (xy + xz – y2 – yz)(x – z) = 0

⇔ [x(y + z) – y(y + z)](x – z) = 0

⇔ (y + z)(x – y)(x – z) = 0

\( \Leftrightarrow \left[ \begin{array}{l}y = - z\\x = y\\x = z\end{array} \right.\)

⇒ 3 số x, y, z có ít nhất hai số bằng nhau hoặc đối nhau. (đpcm)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi Giữa kì 1 Toán 8 có đáp án !!

Số câu hỏi: 63

Copyright © 2021 HOCTAP247