Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD, phân giác của cắt BD ở E. a) Chứng minh: Tam giác AHB đồng dạng tam giác BCD. b) Chứng...

Câu hỏi :

Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD, phân giác của BCD^ cắt BD ở E.

a) Chứng minh: Tam giác AHB đồng dạng tam giác BCD.

b) Chứng minh AH.ED = HB.EB.

c) Tính diện tích tứ giác AECH.

* Đáp án

* Hướng dẫn giải

Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD, phân giác của   cắt BD ở E. a) Chứng minh: Tam giác AHB đồng dạng tam giác BCD. b) Chứng minh AH.ED = HB.EB. c) Tính diện tích tứ giác AECH. (ảnh 1)

Cho hình chữ nhật ABCD có AB = 8cm, BC = 6cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD, phân giác của   cắt BD ở E. a) Chứng minh: Tam giác AHB đồng dạng tam giác BCD. b) Chứng minh AH.ED = HB.EB. c) Tính diện tích tứ giác AECH. (ảnh 2)

a) Vì ABCD là hình chữ nhật nên AB // CD.

Suy ra B^1=D^1 (hai góc so le trong).

Xét DAHB và DBCD có:

BCD^=AHB^=90o

B^1=D^1 (chứng minh trên)

Do đó ∆AHB  ∆BCD (g.g).

b) Từ câu a: ∆AHB∆BCD suy ra: AHBC=HBCDAHHB=BCCD  (1)

Lại có CE là đường phân giác trong ∆BCD nên BCCD=EBED      (2)

Từ (1) và (2) suy ra AHHB=EBED.

Do đó AH.ED = HB.EB (đpcm)

c) Áp dụng định lý Py-ta-go vào ∆ABC vuông tại A, ta được:

AB2 + AD2 = BC2

BC=AB2+AD2=82+62=10  (cm).

Ta có  BCCD=EBEDBCAB=EBED

BCAB+BC=EBED+EB

BCAB+BC=EBED+EB=EBBD

68+6=EB10

EB=6.  108+6=307  (cm)

Khi đó  BCAB=EBED68=307ED

ED=307  .  86=407  (cm).

Áp dụng định lý Py-ta-go vào ∆ADH vuông tại H, ta được:

AH2 + DH2 = AD2

DH=AD2AH2=624,82=3,6  (cm).

Do đó, EH = ED – DH = 4073,6=7435  (cm).

Mặt khác, từ câu a: ∆AHB  ∆BCD suy ra: AHBC=ABBD

AH=AB.BCBD=8.610=4,8  (cm).

Do đó SAECH=2.12AH.HE=4,8  .  743510,15  (cm2)

Vậy diện tích tứ giác AECH là 10,15 cm2.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra giữa kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 94

Copyright © 2021 HOCTAP247