Cho tam giác ABC vuông ở A, AB = 6, AC = 8; đường cao AH, phân giác BD. Gọi I là giao điểm của AH và BD.
a) Tính AD, DC.
b) Chứng minh .
c) Chứng minh AB.BI = BD.HB và tam giác AID cân.
a) Áp dụng định lý Py-ta-go vào ∆ABC vuông tại A, ta có:
AB2 + AC2 = BC2
Ta có AD là tia phân giác , theo tính chất tia phân giác của tam giác:
.
Thay số, ta được: .
Þ DC = AC – AD = 8 – 3 = 5 (cm)
Vậy AD = 3 cm, DC = 5 cm.
b) Xét DHBA và DABC có:
(cùng phụ ).
Do đó DHBA DABC (g.g)
Suy ra: (1)
Mặt khác, BI là tia phân giác , áp dụng tính chất tia phân giác, ta có:
(2)
Từ (1) và (2) suy ra: (đpcm).
c) Xét DABD và DHBI có:
(vì BD là tia phân giác )
Do đó DABD DHBI (g.g)
Suy ra
Lại có DABD DHBI (hai góc tương ứng)
Mà: nên
Do đó DAID cân tại A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247