Giải phương trình: 1/(x^2+9x+20)+1/(x^2+11x+30)+1/(x^2+13x+42)=1/18 .

Câu hỏi :

Giải phương trình:

 1x2+9x+  20+1x2+11x+30+1x2+13x+42=118.

* Đáp án

* Hướng dẫn giải

Ta có:

x2 + 9x + 20 = (x + 4)(x + 5);

x2 + 11x + 30 = (x + 6)(x + 5);

x2 + 13x + 42 = (x + 6)(x + 7).

ĐKXĐ: x ≠ − 4; x ≠ − 5; x ≠ − 6; x ≠ − 7.

Phương trình đã cho trở thành:

1(x+4)(x+5)+1(x+5)(x+6)+1(x+6)(x+7)=118 

1x+41x+5+1x+51x+6+1x+61x+7=118

1x+41x+7=118

18(x+7)18(x+7)(x+4)18(x+4)18(x+7)(x+4)=(x+7)(x+4)18(x+7)(x+4)

Þ 18(x + 7) 18(x + 4) = (x + 7)(x + 4)

18(x + 7 x 4) = x2 + 11x + 28

 x2 + 11x + 28 = 54

 x2 + 11x − 26 = 0

 x2 2x + 13x − 26 = 0

 x(x 2) + 13(x – 2) = 0

 (x + 13)(x 2) = 0

 x + 13 = 0 hoặc x 2 = 0

 x = −13 (TM) hoặc x = 2 (TM).

Vậy tập nghiệm của phương trình đã cho là S = {−13; 2}.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra giữa kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 94

Copyright © 2021 HOCTAP247