Cho hình bình hành ABCD, đường chéo lớn BD. Qua A kẻ đường thẳng cắt các đoạn thẳng BD, BC lần lượt tại E và F, cắt DC tại K. a) Chứng minh AE^2 = EF.EK. b) Kẻ AH vuông góc BD, BN...

Câu hỏi :

Cho hình bình hành ABCD, đường chéo lớn BD. Qua A kẻ đường thẳng cắt các đoạn thẳng BD, BC lần lượt tại E và F, cắt DC tại K.

a) Chứng minh AE2 = EF.EK.

b) Kẻ AHBD,  BNCD,  BMAD(HBD,  NCD,  MAD).

Chứng minh: ∆AHB đồng dạng với ∆BND và AD.DM + DC.DN = BD2.

* Đáp án

* Hướng dẫn giải

Cho hình bình hành ABCD, đường chéo lớn BD. Qua A kẻ đường thẳng cắt các đoạn thẳng BD, BC lần lượt tại E và F, cắt DC tại K.  a) Chứng minh AE^2 = EF.EK. b) Kẻ AH vuông góc BD, BN vuông góc CD, BM vuông góc AD ( H thuộc BD, N thuộc CD, M thuộc BD)  .  Chứng minh: ∆AHB đồng dạng với ∆BND và AD.DM + DC.DN = BD^2. (ảnh 1)

Vì ABCD là hình bình hành nên:

+ AD // BC hay AD // BF

+ AB // CD hay AB // DK.

Áp dụng định lý Ta-let, ta có:

+ AD // BF suy ra: AEEF=EDEB  (1)

+ AB // DK suy ra: EDEB=EKAE (2)

Từ (1) và (2) suy ra: AEEF=EKAE.

Do đó AE2 = EF.EK (đpcm).

b) Xét ∆AHB ∆BND có:

AHB^=BND^=90o

ABH^=BDN^ (AB // DK, hai góc so le trong)

Do đó ∆AHB  ∆BND (g.g) (đpcm)

Suy ra ABBD=BHDNABBD=BHDN AB.DN = BD.BH

Mà AB = DC nên DC.DN = BD.BH (1)

Xét ∆ADH ∆BDM có:

AHD^=BMD^=90o

BDM^ chung.

Do đó ∆ADH ∆BDM (g.g).

Suy ra ADDB=DHDM AD.DM = DH.DB   (2)

Từ (1) và (2) suy ra: AD.DM + DC.DN = BD.BH + DH.DB = BD.(BH + HD)

= BD.BD = BD2.

Do đó AD.DM + DC.DN = BD2 (đpcm).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra giữa kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 94

Copyright © 2021 HOCTAP247