Cho hình chữ nhật ABCD có AB = 12 cm, AD = 9 cm. Gọi H là chân đường vuông góc kẻ từ A đến cạnh BD. a) Chứng minh tam giác ADH đồng dạng với tam giác DBC và AD^2 = HD.BD. b) Tính đ...

Câu hỏi :

Cho hình chữ nhật ABCD có AB = 12 cm, AD = 9 cm. Gọi H là chân đường vuông góc kẻ từ A đến cạnh BD.

a) Chứng minh tam giác ADH đồng dạng với tam giác DBC và AD2 = HD.BD.

b) Tính độ dài HD và HB.

c) Tia phân giác của góc ADB cắt AH tại E và AB tại F. Chứng minh EHEA=FAFB.

* Đáp án

* Hướng dẫn giải

Cho hình chữ nhật ABCD có AB = 12 cm, AD = 9 cm. Gọi H là chân đường vuông góc kẻ từ A đến cạnh BD. a) Chứng minh tam giác ADH đồng dạng với tam giác DBC và AD^2 = HD.BD. b) Tính độ dài HD và HB. c) Tia phân giác của góc ADB cắt AH tại E và AB tại F. Chứng minh  EH/EA=FA/FB. (ảnh 1)

Ta có AHDB AHD^=90o.

Tứ giác ABCD là hình chữ nhật nên AD // BD.

Suy ra ADH^=DBC^ (hai góc so le trong).

Xét ∆ADH và ∆DBC có:

ADH^=DBC^ (cmt)

AHD^=DCB^=90o

Do đó ADH  DBC (g.g)

Suy ra: ADBD=DHBC mà AD = BC (vì tứ giác ABCD là hình chữ nhật)

ADBD=DHAD AD2 = HD.BD.

Vậy ADH  DBC và AD2 = HD.BD.

b) Áp dụng định lý Py-ta-go vào ∆ABD vuông tại A, ta có:

BD2 = AD2 + AB2 = 92 + 122 = 81 + 144 = 225

 BD = 15 (cm).

Ta có AD2 = HD.BD DH=AD2BD=9215=5,4  (cm)

BH = BD – DH = 15 – 5,4 = 9,6 (cm).

Vậy DH = 5,4 cm; BH = 9,6 cm.

c) Xét ∆ADH có DE là tia phân giác của ADH^.

Áp dụng tính chất đường phân giác của tam giác, ta có:

DHDA=EHEA mà AD = BC

Suy ra  DHBC=EHEA(1)

Xét ∆ADB có DF là tia phân giác của ADB^

Áp dụng tính chất đường phân giác của tam giác, ta có:

 FAFB=ADDB  (2)

ADFB=DHBC (cmt)      (3)

Từ (1), (2) và (3) suy ra: EHEA=FAFB (đpcm).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra giữa kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 94

Copyright © 2021 HOCTAP247