Cho hình chữ nhật ABCD có AB = 8 cm; BC = 6 cm. Vẽ đường cao AH của ∆ADB. a) Chứng minh: ∆AHB đồng dạng ∆BCD. b) Chứng minh: ADCho hình chữ nhật ABCD có AB = 8 cm; BC = 6 cm. Vẽ...

Câu hỏi :

Cho hình chữ nhật ABCD có AB = 8 cm; BC = 6 cm. Vẽ đường cao AH của ∆ADB.

a) Chứng minh: ∆AHB đồng dạng ∆BCD.

b) Chứng minh: AD2 = DH . DB.

c) Tính độ dài đoạn thẳng AH.

* Đáp án

* Hướng dẫn giải

Cho hình chữ nhật ABCD có AB = 8 cm; BC = 6 cm. Vẽ đường cao AH của ∆ADB. a) Chứng minh: ∆AHB đồng dạng ∆BCD. b) Chứng minh: ADCho hình chữ nhật ABCD có AB = 8 cm; BC = 6 cm. Vẽ đường cao AH của ∆ADB. a) Chứng minh: ∆AHB đồng dạng ∆BCD. b) Chứng minh: AD2 = DH . DB. c) Tính độ dài đoạn thẳng AH.2 = DH . DB. c) Tính độ dài đoạn thẳng AH. (ảnh 1)

a) Vì ABCD là hình chữ nhật nên AB // CD.

Suy ra: ABH^=BDC^ (hai góc so le trong).

Xét ∆AHB và ∆BCD có:

AHB^=BCD^=90o 

ABH^=BDC^ (cmt).

Do đó ∆AHB  ∆BCD (g.g).

b) Xét ∆AHD và ∆BAD có:

AHD^=BAD^=90o 

ADB^ chung.

Do đó ∆AHD ∆BAD (g.g)

Suy ra  ADBD=DHDA.

Vậy AD2 = DH . BD (đpcm).

c) Xét ∆ABD vuông tại A, áp dụng định lý Py-ta-go, ta có:

BD2 = AB2 + AD2 = 82 + 62 = 100

Suy ra: BD = 10 (cm)

Từ câu a: ∆AHB ∆BCD suy ra AHBC=ABBD .

Hay AH . BD = AB. BC.

Do đó  AH=AB.BCBD=8.610=4,8 (cm).

Vậy AH = 4,8 cm.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra cuối kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 264

Copyright © 2021 HOCTAP247