Cho hình thang ABCD (AB // CD). Gọi O là giao điểm của hai đường chéo AC và BD. Qua O kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở E và G.
a) Chứng minh: OA . OD = OB . OC.
b) Cho AB = 5 cm, CD = 10 cm và OC = 6 cm. Hãy tính OA, OE.
c) Chứng minh rằng: .
a) Ta có AB // CD, áp dụng định lý Ta-let: .
Do đó: OA . OD = OB . OC (đpcm).
b) Từ câu a suy ra:
(cm).
Do OE // DC nên theo hệ quả định lí Ta-let:
(cm).
Vậy OA = 3 cm, cm.
c) Do OE // AB, theo hệ quả định lý Ta-lét ta có: (1)
Do OE // CD, theo hệ quả định lý Ta-lét ta có: (2)
Cộng vế theo vế của (1) và (2) ta được: .
Suy ra hay (*)
Chứng minh tương tự, ta có: (**)
Từ (*) và (**) suy ra: (đpcm).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247