Cho tam giác ABC vuông tại A, biết AB = 9 cm và AC = 12 cm. Tia phân giác của góc BAC cắt cạnh BC tại điểm D. Từ D kẻ đường thẳng vuông góc với AC, đường thẳng này cắt AC tại E.
a) Chứng minh: ∆CED đồng dạng với ∆CAB.
b) Tính .
c) Tính diện tích tam giác ABD.
a)Xét ∆CED và ∆CAB có:
(vì )
chung
Do đó ∆CED ∆CAB (g.g).
b) Áp dụng định lý Py-ta-go vào ∆ABC vuông tại A, ta có:
BC2 = AB2 + AC2 = 92 + 122 = 225.
Suy ra BC = 15 cm.
Vì ∆CED ∆CAB (cmt) nên .
Khi đó: .
Vậy .
c) Vì AD là tia phân giác của nên .
Khi đó .
Ta có: (cm2).
Mặt khác:
(cm2).
Vậy diện tích tam giác ABD là cm2.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247