Cho hình bình hành ABCD và điểm F trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chứng minh: a) Chứng minh: ∆DEA ∆BEF và ∆DGE ∆BAE. b) Chứng minh: AE2 = EF . EG. c) Chứng min...

Câu hỏi :

Cho hình bình hành ABCD và điểm F trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chứng minh:

a) Chứng minh: ∆DEA  ∆BEF và ∆DGE ∆BAE.

b) Chứng minh: AE2 = EF . EG.

c) Chứng minh rằng BF. DG không đổi khi điểm F thay đổi trên BC.

* Đáp án

* Hướng dẫn giải

Cho hình bình hành ABCD và điểm F trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chứng minh: a) Chứng minh: ∆DEA   ∆BEF và ∆DGE   ∆BAE. b) Chứng minh: AE2 = EF . EG. c) Chứng minh rằng BF. DG không đổi khi điểm F thay đổi trên BC. (ảnh 1)

Ta có ABCD là hình bình hành nên:

+ AD // BC hay BF // AD.

Khi đó: EDA^=EBF^; EAD^=EFB^ (các cặp góc so le trong).

+ AB // CD hay AB//GD.

DGE^  =  BAE^ (hai góc so le trong).

Xét ∆DEA và ∆BEF có:

EDA^=EBF^ (cmt).

EAD^=EFB^ (cmt).

Do đó ∆DEA  ∆BEF (g.g).

Xét ∆DGE và ∆BAE có:

DGE^  =  BAE^ (cmt)

DEG^=BEA^ (hai góc đối đỉnh)

Do đó ∆DGE ∆BAE (g.g).

Vậy ∆DEA ∆BEF và ∆DGE  ∆BAE.

b) Theo câu a, ta có:

+ ∆DEA ∆BEF suy ra: EAEF=DEBE (1)

+ ∆DGE ∆BAE suy ra:  DEBE=EGEA (2)

Từ (1) và (2) suy ra EAEF=EGEA.

Do đó: EA2 = EF . FG (đpcm).

c) Theo câu a, ta có:

+ ∆DEA ∆BEF suy ra: DABF=DEBE (3)

+ ∆DGE ∆BAE suy ra: DEBE=DGBA (4)

Từ (3) và (4) suy ra DABF=DGBA.

Do đó: BF . DG = AD . AB (không đổi).

Vậy BF . DG không đổi khi F thay đổi trên BC.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra cuối kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 264

Copyright © 2021 HOCTAP247