Ta có: 1x+1y+1z=0⇔xy+yz+xzxyz=0.
Mà ba số x, y, z dương nên: xyz > 0.
Nên: xy + yz + xz = 0
Û yz = – xy – xz.
Ta có: x2 + 2yz = x2 + yz – xy – xz
= x(x – y) – z(x – y) = (x – y)(x – z).
Tương tự: y2 + 2xz = (y – x)(y – z);
z2 + 2xy = (z – x)(z – y).
Do đó: A=yzx2+2yz+xzy2+2xz+xyz2+2xy
=yz(x−y)(x−z)+xz(y−x)(y−z)+xy(z−x)(z−y)
=−yz(y−z)(x−y)(y−z)(z−x)−xz(z−x)(x−y)(y−z)(z−x)−xy(x−y)(x−y)(y−z)(z−x)
=−yz(y−z)−xz(z−x)−xy(x−y)(x−y)(y−z)(z−x)
=−yz(y−z)+xz(y−z)+xz(x−y)−xy(x−y)(x−y)(y−z)(z−x)
=(y−z)(xz−yz)+(x−y)(xz−xy)(x−y)(y−z)(z−x)
=z(x−y)(y−z)−x(x−y)(y−z)(x−y)(y−z)(z−x)
=(x−y)(y−z)(z−x)(x−y)(y−z)(z−x)=1.
Vậy A=yzx2+2yz+xzy2+2xz+xyz2+2xy=1.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247