Cho ABC vuông tại A, đường cao AH. a)Chứng minh ABC đồng dạng HBA và AB. AH = BH. AC.

Câu hỏi :

Cho DABC vuông tại A, đường cao AH.

a) Chứng minh DABC đồng dạng DHBA và AB. AH = BH. AC.

b) Tia phân giác của ABC^ cắt AH tại I. Biết BH = 3 cm, AB = 5 cm. Tính AI, HI.

c) Tia phân giác góc HAC cắt BC tại K. Chứng minh IK // AC.

* Đáp án

* Hướng dẫn giải

Cho ABC vuông tại A, đường cao AH.  a)Chứng minh ABC đồng dạng HBA và AB. AH = BH. AC. (ảnh 1)

a) DABC vuông tại A nên BAC^=90o.

Mà AH là đường cao DABC hay AH ^ BC nên AHB^=90o.

Do đó BAC^ = AHB^.

Xét DABC và DHBA có:

BAC^ = AHB^(cmt)

B^ là góc chung.

Do đó DABC  DHBA (g.g)

Suy ra ABHB ACAH

Vậy AB. AH = AC. HB (đpcm)

b) Xét DAHB vuông tại H, ta có:

AB2 = AH2 + HB2 (định lý Py-ta-go)

=> AH2 = AB2 HB2 = 25 − 9 = 16

=> AH = 4 (cm).

Vì BI là tia phân giác của ABC^

=> IAIH = ABBH (tính chất đường phân giác trong tam giác)

=> AHHIIH= ABBH 53

<=> AHIH− 1 53

<=> 4IH=83

=> IH = 128 = 1,5 (cm)

Ta có: AI = AH IH = 4 1,5 = 2,5 (cm)

Vậy AI = 2,5 cm; HI = 1,5 cm.

c) Xét DABH DCAH có:

AHB^=AHC^=90o

ABH^=CAH^ (cùng phụ BAH^)

Do đó DABH  DCAH (g.g)

Suy ra AHBH=HCAH.

Suy ra AH2 = BH. HC

<=>16 = 3. HC

=> HC = 163

=> BC = 163 + 3 = 253 (cm)

+ AC2 = BC2 − AB2

=> AC2 = 2532− 52 4009

=> AC = 203 (cm).

Xét DHAC có AK là tia phân giác của HAC^ nên:

KHKC = AHAC 35

Mà HIIA = 1,52,5 35

Suy ra HIIA KHKC

Do đó IK // AC (định lý Ta-let đảo) (đpcm).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra giữa kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 94

Copyright © 2021 HOCTAP247