Cho tam giác ABC có ba góc nhọn, các đường cao BD và CE cắt nhau ở H. a)Chứng minh tam giác ABD đồng dạng tam giác ACE

Câu hỏi :

Cho tam giác ABC có ba góc nhọn, các đường cao BD và CE cắt nhau ở H.

a) Chứng minh DABD  DACE.

b) Chứng minh CH. CE = CD. CA.

c) Kẻ EK ^ AC tại K; DI ^ EC tại I. Chứng minh AH // IK.

d) Chứng minh SEIK SABC.

* Đáp án

* Hướng dẫn giải

Cho tam giác ABC có ba góc nhọn, các đường cao BD và CE cắt nhau ở H.  a)Chứng minh tam giác ABD đồng dạng tam giác ACE (ảnh 1)

a) Vì BD và CE là đường cao của DABC nên BD ^ AC, CE ^ AB.

Suy ra ADB^=90o;  AEC^=90o

Do đó ADB^=AEC^ .

Xét DABD và DACE có:

BAC^ chung

ADB^=AEC^ (chứng minh trên)

Do đó DABD  DACE (g.g).

b) Xét DACE và DHCD có:

AEC^=HDC^ = 90° (vì BD ^ AC, CE ^ AB)

HCD^ chung

Do đó D ACE  D HCD (g.g)

Suy ra CACH=CECD

Do đó CH. CE = CD. CA (đpcm).

c) Xét DCDI và DCEK có:

CID^=CKE^= 90° (vì EK ^ AC tại K; DI ^ EC tại I)

DCI^ chung

Do đó D CDI  D CEK (g.g)

Suy ra  CICK=CDCE

Theo câu b có: CDCE=CHCA suy ra CICK=CHCA

Khi đó CICH=CKCA

Do đó KI // AH (theo định lý Ta-let đảo).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra giữa kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 94

Copyright © 2021 HOCTAP247