Cho tam giác ABC vuông tại A, kẻ tia phân giác gócABC cắt AC tại D a) Biết BC = 5cm, AB = 3cm, Tính AC và AD

Câu hỏi :

Cho tam giác ABC vuông tại A, kẻ tia phân giác ABC^  cắt AC tại D.

a) Biết BC = 5cm, AB = 3 cm. Tính AC và AD.

b) Qua D kẻ DH vuông góc với BC tại H. Chứng minh ∆ABC  ∆HDC từ đó chứng minh CH.CB = CD.CA.

c) E là hình chiếu của A trên BC. Chứng minh BCBA=HCHE .

d) O là giao điểm của BD và AH. Qua B kẻ đường thẳng song song với AH cắt các tia CO và CA lần lượt tại M và N. Chứng minh M là trung điểm của BN.

* Đáp án

* Hướng dẫn giải

Cho tam giác ABC vuông tại A, kẻ tia phân giác  gócABC cắt AC tại D a) Biết BC = 5cm, AB = 3cm, Tính AC và AD (ảnh 1)

a) Ta có ABC vuông tại A nên ta có:

AB2 + AC2 = BC2 ( định lý Py – ta – go)

Þ AC2 = BC2 – AB2 = 52 – 32 = 25 – 9 = 16

Þ AC = 4 (cm).

Xét ABC có BD là tia phân giác của ABC^  (D Î AC)

Ta có: ADDC=BABC  (định lý)

Mà DC = BC – AD = 5 – AD

AD5AD=BABC=35

Þ 5.AD = 3.(5 – AD)

Û 5AD = 15 – 3AD

Û 8AD = 15

Û AD =158 = 1,875 (cm)

Vậy độ dài đoạn AC là 4 cm và AD là 1,875 cm.

b) Theo đề ABC vuông tại A nên có BAC^=90o ;

DH vuông góc với BC tại H nên DHC^=90o ;

Do đó BAC^=DHC^=90o .

Xét ∆ABC và ∆HDC có:

BCA^ chung (giả thiết)

BAC^=DHC^=90o(cmt)

Suy ra, ∆ABC  ∆HDC (g.g)

∆ABC  ∆HDC (cmt) nên CHCA=CDCB  (các cạnh tương ứng tỉ lệ)

Þ CH.CB = CA.CD.

c) Vì E là hình chiếu của A trên BC nên (E Î BC).

DH vuông góc với BC tại H (H Î BC).

Suy ra DH // AE (định lý)

Áp dụng định lý Ta – let trong ∆AEC có DH // AE (cmt)

Ta có: HCHE=DCDA  (1);

Xét ∆ABC có BD là tia phân giác của ABC^  (D Î AC)

Ta có: BCBA=DCDA  (2);

Từ (1) và (2) suy ra HCHE=BCBA=DCDA .

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra giữa kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 94

Copyright © 2021 HOCTAP247