Giải phương trình a) x+1/3 + 1/2 = x-1/6 - 1 b) 4x2 – 1 – x(2x – 1) = 0

Câu hỏi :

Giải phương trình

a) x+13+12=x161 ;

b) 4x2 – 1 – x(2x – 1) = 0;

c) x+3x3+x3x+3=x2+2xx29+1 ;

d) (x2 + x – 1)(x2 + x + 3) = 5.

* Đáp án

* Hướng dẫn giải

a) x+13+12=x161

2x+12.3+3.13.2=x16662x+26+36=x1666

Û 2x + 2 + 3 = x – 1 – 6

Û 2x + 5 = x – 7

Û 2x – x = – 7 – 5

Û x = – 12.

Vậy tập nghiệm của phương trình đã cho là S = {–12}.

b) 4x2 – 1 – x(2x – 1) = 0

Û 4x2 – 1 – 2x2 + x = 0

Û 4x2 – 2x2 + x – 1 = 0

Û 2x2 + x – 1 = 0

Û 2x2 + 2x – x – 1 = 0

Û 2x(x + 1) – (x + 1) = 0

Û (x + 1)(2x – 1) = 0

x+1=02x1=0x=12x=1x=1x=12

Vậy tập nghiệm của phương trình đã cho là S=1;  12 .

c) x+3x3+x3x+3=x2+2xx29+1

Điều kiện xác định:

x30x+30x290x30x+30x3x+30x30x+30x3x3

Khi đó phương trình đã cho tương đương với:

x+3x3+x3x+3=x2+2x(x+3)(x3)+1x+3x+3x3x+3+x3x3x3x+3=x2+2xx3x+3+x3x+3x3x+3x+32x3x+3+x32x3x+3=x2+2xx3x+3+x29x3x+3

Þ (x + 3)2 + (x – 3)2 = x2 + 2x + x2 – 9

Û x2 + 6x + 9 + x2 – 6x + 9 = 2x2 + 2x – 9

Û 2x2 + 18 = 2x2 + 2x – 9

Û 2x2 + 2x 2x2 = 9 + 18

Û 2x = 27

Û x = 272  (thỏa mãn)

Vậy tập nghiệm của phương trình là S = 272 ;

d) (x2 + x – 1)(x2 + x + 3) = 5

Đặt t = x2 + x.

Khi đó phương trình đã cho trở thành:

(t – 1)(t + 3) = 5

Û t2 – t + 3t – 3 = 5

Û t2 + 2t – 3 = 5

Û t2 + 2t – 8 = 0

Û t2 – 2t + 4t – 8 = 0

Û t(t – 2) + 4(t – 2) = 0

Û (t – 2)(t + 4) = 0

t2=0t+4=0t=2t=4

Với t = 2, ta có: x2 + x = 2

Û x2 – x + 2x – 2 = 0

Û x(x – 1) + 2(x – 1) = 0

Û (x – 1)(x + 2) = 0

 x1=0x+2=0x=1x=2

Với t = –4, ta có: x2 + x = –4

x2 + x + 4 = 0

x2+x+14+154=0x+122+154=0

x+1220  nên x+122+154>0

Do đó không có giá trị x thỏa mãn x+122+154=0 .

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra giữa kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 94

Copyright © 2021 HOCTAP247