Cho tam giác ABC có AB = 5 cm; BC = 8 cm. Trên cạnh AB lấy điểm D sao cho AD = 2 cm.

Câu hỏi :

Cho tam giác ABC có AB = 5 cm; BC = 8 cm. Trên cạnh AB lấy điểm D sao cho AD = 2 cm. Qua D kẻ đường thẳng song song với BC cắt AC ở E và cắt đường thẳng qua C song song với AB ở F.

a) Tính DE.

b) BF cắt AC ở I. Tính IFIB .

c) Chứng minh rằng IC2 = IE.IA.

d) BE cắt AF ở H. Tính HAHF .

* Đáp án

* Hướng dẫn giải

Cho tam giác ABC có AB = 5 cm; BC = 8 cm. Trên cạnh AB lấy điểm D sao cho AD = 2 cm. (ảnh 1)

a)Áp dụng định lý Ta-let trong ∆ABC có DE // BC, ta có:

ADAB=DEBC

DE=AD.BCAB=2.85=3,2 (cm).

b) Theo đề ta có DE // BC hay DF // BC và BD // CF.

Suy ra tứ giác BDFC là hình bình hành nên ta có FC = BD.

Mà BD = AB – AD = 5 – 2 = 3 (cm).

Suy ra FC = 3 cm.

Ta có CF // AD (gt), áp dụng hệ quả của định lý Ta-let, ta có:

IFIB=FCAD=35

c) Áp dụng hệ quả của định lý Ta – let với CF // AD, ta có:

IFIB=ICIA (1)

Áp dụng hệ quả định lý Ta – let với EF // BC, ta có:

IFIB=IEIC (2)

Từ (1) và (2) suy ra ICIA=IEIC=IFIB  nên IC2 = IE.IA.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề kiểm tra giữa kì 2 Toán 8 có đáp án ( Mới nhất) !!

Số câu hỏi: 94

Copyright © 2021 HOCTAP247