Gọi G là giao điểm của AE với MN. Chứng minh B, G, F thẳng hàng.

Câu hỏi :

Cho tam giác ABC có AB=2BC , từ trung điểm M của AB kẻ tia Mx song song BC, từ C kẻ tia Cy song song AB sao cho Mx cắt Cy tại N.

Gọi G là giao điểm của AE với MN. Chứng minh B, G, F thẳng hàng.

* Đáp án

* Hướng dẫn giải

Phương pháp:

Sử dụng dấu hiệu nhận biết và tính chất của hình bình hành, dấu hiệu nhận biết tam giác vuông, chứng minh tam giác bằng nhau và tính chất trọng tâm của tam giác.

Cách giải:

Ta có:ΔADF=ΔCDE (cmt)AF=EC .

CM=AN (AMCN là hình bình hành) và CE=12CMAF=12AN  .

Vậy F là trung điểm AN.

Xét tam giác ABNG là giao của hai đường trung tuyến AENM nên G là trọng tâm của tam giác ABN.

BG đi qua trung điểm F của AN  B, G, F thẳng hàng.

Media VietJack

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bộ 14 đề thi Học kì 1 Toán 8 có đáp án !!

Số câu hỏi: 199

Copyright © 2021 HOCTAP247