Gọi I là điểm đối xứng của D qua F, tia IA cắt tia DE tại K. Gọi O là giao điểm của AD

Câu hỏi :

Cho tam giác ABC có AD là phân giác của góc BACDBC . Từ  kẻ các đường thẳng song song với AB và AC, chúng cắt AC,AB tại E và F.

Gọi I là điểm đối xứng của D qua F, tia IA cắt tia DE tại K. Gọi O là giao điểm của AD và EF. Chứng minh G đối xứng với K qua O.

* Đáp án

* Hướng dẫn giải

Phương pháp:

Dùng tính chất của hình bình hành, hình thoi để giải quyết bài toán.

Cách giải:

Media VietJack

FA=FG   gt,   FI=FD   gt  nên IADG là hình bình hành (dhnb)

IA//DG (tính chất) hay AK//DG .

Lại có DK//GA  (do DE//AB )

AKDG là hình bình hành (dhnb)

O là trung điểm của AD nên O cũng là trung điểm của GK. (hai đường chéo hình hình hành cắt nhau tại trung điểm của mỗi đường).

Vậy K đối xứng với G qua O. (đpcm).

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bộ 14 đề thi Học kì 1 Toán 8 có đáp án !!

Số câu hỏi: 199

Copyright © 2021 HOCTAP247