Gọi O là giao điểm của AD và EF . Chứng minh tứ giác ABDI là hình bình hành

Câu hỏi :

Cho ΔABC vuông tại A. Gọi D là trung điểm của BC , kẻ DE vuông góc với AB tại E . Gọi I là điểm đối xứng với D qua AC,DI cắt AC tại F .
Gọi O là giao điểm của AD EF . Chứng minh tứ giác ABDI là hình bình hành và từ đó suy ra ba điểmB,O,I  thẳng hàng.

* Đáp án

* Hướng dẫn giải

Phương pháp:

Chứng minh tứ giác có một cặp cạnh đối vừa song song vừa bằng nhau là hình bình hành.

Cách giải:

Media VietJack

Gọi O là giao điểm của AD EF. Chứng minh tứ giác ABDI là hình bình hành và từ đó suy ra ba điểm B,O,I  thẳng hàng.

Ta có:DFACABAC nên DF//AB  (từ vuông góc đến song song)

D là trung điểm BC nên F là trung điểm AC

DF là đường trung bình của tam giác ACBDF=12ABt/cAB=2DF

 DI=2DF (do I đối xứng với D qua AC )

Do đó DI=AB=2DF .

DI//AB  nên tứ giác ABDI là hình bình hành (dhnb).

O là giao điểm của EF với AD nên O là trung điểm AD .

Tứ giác ABDI là hình bình hành hai đường chéo BI,AD cắt nhau tại O là trung điểm của mỗi đường.

Vậy B,O,I  thẳng hàng.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bộ 14 đề thi Học kì 1 Toán 8 có đáp án !!

Số câu hỏi: 199

Copyright © 2021 HOCTAP247