Cho x,y thuộc Z và x khác y . Tìm giá trị nhỏ nhất của biểu thức

Câu hỏi :

Cho x,y  xy . Tìm giá trị nhỏ nhất của biểu thức P=x26xy+6y2x22xy+y2  .

* Đáp án

* Hướng dẫn giải

Phương pháp:

Xét y=0

Xét y0 , chia cả tử và mẫu cho y2 . Sau đó ta chứng minh biểu thức thu được lớn hơn hoặc bằng 3.

Cách giải:

Xét y=0, ta có:P=1 .

Xét y0, chia cả tử và mẫu của 1 cho y2, ta có:

P=xy26xy+6xy22xy+1

Đặt t=xyt1 . Biểu thức P  trở thành:

P=t26t+6t22t+1

Ta sẽ đi chứng minh:P3

Ta có:

t26t+6t22t+13

t26t+63t2+6t3

4t212t+90

2t320

 luôn đúng.

Dấu "="  xảy ra 2t3=0t=32xy=322x=3y .

Vậy minP=3, đạt được khi 2x=3y .

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bộ 14 đề thi Học kì 1 Toán 8 có đáp án !!

Số câu hỏi: 199

Copyright © 2021 HOCTAP247