Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. từ B kẻ tia Bx song song với AC (Tia Bx thuộc nửa mặt phẳng bờ AB chứa điểm C),

Câu hỏi :

Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. từ B kẻ tia Bx song song với AC (Tia Bx thuộc nửa mặt phẳng bờ AB chứa điểm C), tia phân giác của góc BAC cắt BC tại M và cắt Bx tại N.

a)     Chứng minh tam giác BMN đồng dạng với tam giác CMA

b)    Chứng minh   ABAC=MNAM

c)     Tính BM, MC. Tính tỉ số diện tích tam giác ABM và tam giác AMC

* Đáp án

* Hướng dẫn giải

Cho tam giác ABC vuông tại A có AB = 3 cm, AC = 4 cm. từ B kẻ tia Bx song song với AC (Tia Bx thuộc nửa mặt phẳng bờ AB chứa điểm C),  (ảnh 1)

a)     Xét ΔBMN ΔAMC có : BMN^=AMC^ (đối đỉnh)    ; CAN^=ANB^ (so le trong)

b)   ΔBMN~ΔCMA(gg)

ΔBMN~ΔCMAMBCM=MNMA  (1)

ΔAMCcó AM là đường phân giác ABAC=BMCM   (2)

Từ (1) và (2) ta có: ABAC=MNAM

c)     Áp dụng định lý Pytago vào ΔABCBC=AB2+AC2=32+42=5(cm)

Ta có ABAC=BMCM   (từ (2)) ABAB+AC=BMBM+MC hay 33+4=BM5BM=157  (cm)

 

MC=5157=207(cm)SABMSAMC=12AH.BM12AH.MC=BMMC=15/720/7=34

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài tập theo tuần Toán 8 - Tuần 33 !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247